Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Crystal structure inside calcium fluoride with an implanted muon
Credit: SJB

Professor Stephen Blundell

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Muons and magnets
Stephen.Blundell@physics.ox.ac.uk
Telephone: 01865 (2)72347
Clarendon Laboratory, room 108
  • About
  • Books
  • Teaching
  • Research
  • Publications

Quantum Griffiths Phase Inside the Ferromagnetic Phase of Ni_{1-x}V_{x}.

Physical review letters 118:26 (2017) 267202-267202

Authors:

R Wang, A Gebretsadik, S Ubaid-Kassis, A Schroeder, T Vojta, PJ Baker, FL Pratt, SJ Blundell, T Lancaster, I Franke, JS Möller, K Page

Abstract:

We study by means of bulk and local probes the d-metal alloy Ni_{1-x}V_{x} close to the quantum critical concentration, x_{c}≈11.6%, where the ferromagnetic transition temperature vanishes. The magnetization-field curve in the ferromagnetic phase takes an anomalous power-law form with a nonuniversal exponent that is strongly x dependent and mirrors the behavior in the paramagnetic phase. Muon spin rotation experiments demonstrate inhomogeneous magnetic order and indicate the presence of dynamic fluctuating magnetic clusters. These results provide strong evidence for a quantum Griffiths phase on the ferromagnetic side of the quantum phase transition.
More details from the publisher
Details from ORA
More details
More details

Coexistence of magnetism and superconductivity in separate layers of the iron-based superconductor Li_{1-x}Fe_{x}(OH)Fe_{1-y}Se

(2017)

Authors:

CV Topping, FKK Kirschner, SJ Blundell, PJ Baker, DN Woodruff, F Schild, H Sun, SJ Clarke
More details from the publisher
Details from ArXiV

A superfluid universe, by K. Huang

Contemporary Physics Taylor & Francis 58:2 (2017) 203-204
More details from the publisher

Group theory in a nutshell for physicists, by A. Zee

Contemporary Physics Taylor & Francis 58:2 (2017) 197-198
More details from the publisher

Coexistence of magnetism and superconductivity in separate layers of the iron-based superconductor

Physical Review B American Physical Society 95:13 (2017) 134419

Authors:

Craig V Topping, Franziska KK Kirschner, Stephen Blundell, Peter J Baker, Daniel N Woodruff, F Schild, Hu Sun, Simon J Clarke

Abstract:

The magnetic properties attributed to the hydroxide layer of Li1-xFex(OH)Fe1-ySe have been elucidated by the study of superconducting and nonsuperconducting members of this family of compounds. Both ac magnetometry and muon spin relaxation measurements of nonsuperconductors find a magnetic state existing below ≈10 K which exhibits slow relaxation of magnetization. This magnetic state is accompanied by a low-temperature heat capacity anomaly present in both superconducting and nonsuperconducting variants suggesting that the magnetism persists into the superconducting state. The estimated value of magnetic moment present within the hydroxide layer supports a picture of a glassy magnetic state, probably comprising clusters of iron ions of varying cluster sizes distributed within the lithium hydroxide layer.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 31
  • Page 32
  • Page 33
  • Page 34
  • Current page 35
  • Page 36
  • Page 37
  • Page 38
  • Page 39
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet