Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Crystal structure inside calcium fluoride with an implanted muon
Credit: SJB

Professor Stephen Blundell

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Muons and magnets
Stephen.Blundell@physics.ox.ac.uk
Telephone: 01865 (2)72347
Clarendon Laboratory, room 108
  • About
  • Books
  • Teaching
  • Research
  • Publications

Nodal multigap superconductivity in KCa$_2$Fe$_4$As$_4$F$_2$

(2017)

Authors:

M Smidman, FKK Kirschner, DT Adroja, AD Hillier, F Lang, ZC Wang, GH Cao, SJ Blundell
More details from the publisher

Low-field spin dynamics of Cr7Ni and Cr7Ni-Cu-Cr7Ni molecular rings as detected by mu SR

PHYSICAL REVIEW B 96:18 (2017) ARTN 184403

Authors:

S Sanna, P Arosio, L Bordonali, F Adelnia, M Mariani, E Garlatti, C Baines, A Amato, KPV Sabareesh, G Timco, REP Winpenny, SJ Blundell, A Lascialfari
More details from the publisher
Details from ORA
More details

Proposal for the Detection of Magnetic Monopoles in Spin Ice via Nanoscale Magnetometry

(2017)

Authors:

Franziska KK Kirschner, Felix Flicker, Amir Yacoby, Norman Y Yao, Stephen J Blundell
More details from the publisher

Strong coupling of microwave photons to antiferromagnetic fluctuations in an organic magnet

Physical Review Letters American Physical Society 119:14 (2017) 147701

Authors:

Matthias Mergenthaler, Junjie Liu, Jennifer Le Roy, Natalia Ares, Amber Thompson, Lapo Bogani, F Luis, Stephen Blundell, T Lancaster, Arzhang Ardavan, G Andrew D Briggs, Peter J Leek, Edward Laird

Abstract:

Coupling between a crystal of di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) radicals and a superconducting microwave resonator is investigated in a circuit quantum electrodynamics (cQED) architecture. The crystal exhibits paramagnetic behavior above 4 K, with antiferromagnetic correlations appearing below this temperature, and we demonstrate strong coupling at base temperature. The magnetic resonance acquires a field angle dependence as the crystal is cooled down, indicating anisotropy of the exchange interactions. These results show that multi-spin modes in organic crystals are suitable for cQED, offering a platform for their coherent manipulation. They also utilize the cQED architecture as a way to probe spin correlations at low temperature.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Quantum measurement, by P. Busch, P. J. Lahti, J.-P. Pellonpää, and K. Ylinen

Contemporary Physics Taylor & Francis 58:4 (2017) 371-371
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 28
  • Page 29
  • Page 30
  • Page 31
  • Current page 32
  • Page 33
  • Page 34
  • Page 35
  • Page 36
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet