Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Crystal structure inside calcium fluoride with an implanted muon
Credit: SJB

Professor Stephen Blundell

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Muons and magnets
Stephen.Blundell@physics.ox.ac.uk
Telephone: 01865 (2)72347
Clarendon Laboratory, room 108
  • About
  • Books
  • Teaching
  • Research
  • Publications

Superconductors: What they're good for

The New Scientist Elsevier 212:2837 (2011) vi-vii
More details from the publisher

Low-moment magnetism in the double perovskites Ba2MOsO 6 (M=Li,Na)

Physical Review B - Condensed Matter and Materials Physics 84:14 (2011)

Authors:

AJ Steele, PJ Baker, T Lancaster, FL Pratt, I Franke, S Ghannadzadeh, PA Goddard, W Hayes, D Prabhakaran, SJ Blundell

Abstract:

The magnetic ground states of the isostructural double perovskites Ba 2NaOsO6 and Ba2LiOsO6 are investigated with muon-spin relaxation. In Ba2NaOsO6 long-range magnetic order is detected via the onset of a spontaneous muon-spin precession signal below Tc=7.2±0.2K, while in Ba 2LiOsO6 a static but spatially disordered internal field is found below 8 K. A probabilistic argument is used to show from the observed precession frequencies that the magnetic ground state in Ba 2NaOsO6 is most likely to be low-moment (≈0.2μB) ferromagnetism and not canted antiferromagnetism. Ba2LiOsO6 is antiferromagnetic and we find a spin-flop transition at 5.5T. A reduced osmium moment is common to both compounds, probably arising from a combination of spin-orbit coupling and frustration. © 2011 American Physical Society.
More details from the publisher
More details

Local magnetism in the molecule-based metamagnet [Ru2(O 2CMe)4]3[Cr(CN)6] probed with implanted muons

Physical Review B - Condensed Matter and Materials Physics 84:9 (2011)

Authors:

T Lancaster, FL Pratt, SJ Blundell, AJ Steele, PJ Baker, JD Wright, I Watanabe, RS Fishman, JS Miller

Abstract:

We present a muon-spin relaxation study of local magnetism in the molecule-based metamagnet [Ru2(O2CMe)4] 3[Cr(CN)6]. We observe magnetic order with T N=33 K, although above 25 K the sublattice spins become less rigid and a degree of static magnetic disorder is observed. The comparison of measurements in applied magnetic field with simulations allows us to understand the origin of the muon response across the metamagnetic transition and to map out the phase diagram of the material. Applied hydrostatic pressures of up to 6 kbar lead to an increase in the local magnetic field along with a complex change in the internal magnetic-field distribution. © 2011 American Physical Society.
More details from the publisher
More details

22pPSA-24 111型鉄系超伝導体NaFe_<1-x>Co_xAsの圧力効果(22pPSA 領域8ポスターセッション(低温II(鉄砒素系)),領域8(強相関系:高温超伝導,強相関f電子系など))

(2011) 560

Authors:

山口 修平, 美藤 正樹, 出口 博之, 高木 精志, DR Parker, MJP Smith, MJ Pitcher, SJ Blundell, SJ Clarke
More details from the publisher

Magnetic order in quasi-two-dimensional molecular magnets investigated with muon-spin relaxation

Physical Review B - Condensed Matter and Materials Physics 84:6 (2011)

Authors:

AJ Steele, T Lancaster, SJ Blundell, PJ Baker, FL Pratt, C Baines, MM Conner, HI Southerland, JL Manson, JA Schlueter

Abstract:

We present the results of a muon-spin relaxation (μ+SR) investigation into magnetic ordering in several families of layered quasi-two-dimensional molecular antiferromagnets based on transition-metal ions such as S=12 Cu2+ bridged with organic ligands such as pyrazine. In many of these materials magnetic ordering is difficult to detect with conventional magnetic probes. In contrast, μ+SR allows us to identify ordering temperatures and study the critical behavior close to TN. Combining this with measurements of in-plane magnetic exchange J and predictions from quantum Monte Carlo simulations we may assess the degree of isolation of the 2D layers through estimates of the effective inter-layer exchange coupling and in-layer correlation lengths at TN. We also identify the likely metal-ion moment sizes and muon stopping sites in these materials, based on probabilistic analysis of the magnetic structures and of muon-fluorine dipole-dipole coupling in fluorinated materials. © 2011 American Physical Society.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 73
  • Page 74
  • Page 75
  • Page 76
  • Current page 77
  • Page 78
  • Page 79
  • Page 80
  • Page 81
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet