Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Clarendon Laboratory and Beecroft Building

Andrew Boothroyd

Interim Head of Department

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • X-ray and neutron scattering
Andrew.Boothroyd@physics.ox.ac.uk
Telephone: 01865 (2)72376
Clarendon Laboratory, room 172,175,377
ORCID ID 0000-0002-3575-7471
ResearcherID AAA-7883-2021
  • About
  • News
  • Research
  • Teaching
  • Prizes, awards and recognition
  • Software
  • Vacancies
  • Publications

Textbook

Principles of Neutron Scattering from Condensed Matter
Principles of Neutron Scattering from Condensed Matter

Published by Oxford University Press in July 2020

Buy now

Magnetic excitations of Fe(1+y)Se(x)Te(1-x) in magnetic and superconductive phases.

J Phys Condens Matter 22:14 (2010) 142202

Authors:

P Babkevich, M Bendele, AT Boothroyd, K Conder, SN Gvasaliya, R Khasanov, E Pomjakushina, B Roessli

Abstract:

We have used inelastic neutron scattering and muon-spin rotation to compare the low energy magnetic excitations in single crystals of superconducting Fe(1.01)Se(0.50)Te(0.50) and non-superconducting Fe(1.10)Se(0.25)Te(0.75). We confirm the existence of a spin resonance in the superconducting phase of Fe(1.01)Se(0.50)Te(0.50), at an energy of 7 meV and a wavevector of (1/2, 1/2, 0). The non-superconducting sample exhibits two incommensurate magnetic excitations at (1/2, 1/2, 0) ± (0.18, - 0.18, 0) which rise steeply in energy, but no resonance is observed at low energies. A strongly dispersive low energy magnetic excitation is also observed in Fe(1.10)Se(0.25)Te(0.75) close to the commensurate antiferromagnetic ordering wavevector (1/2 - δ, 0, 1/2), where δ≈0.03. The magnetic correlations in both samples are found to be quasi-two-dimensional in character and persist well above the magnetic (Fe(1.10)Se(0.25)Te(0.75)) and superconducting (Fe(1.01)Se(0.50)Te(0.50)) transition temperatures.
More details from the publisher
More details
Details from ArXiV

Magnetic excitations of Fe_{1+y}Se_xTe_{1-x} in magnetic and superconductive phases

(2010)

Authors:

P Babkevich, M Bendele, AT Boothroyd, K Conder, SN Gvasaliya, R Khasanov, E Pomjakushina, B Roessli
More details from the publisher

Observed and calculated energy spectra of Bragg-forbidden reflections in YVO3

Journal of Physics: Conference Series 200:SECTION 1 (2010)

Authors:

RD Johnson, TAW Beale, Y Joly, SR Bland, PD Hatton, C Mazzoli, L Bouchenoire, D Prabhakaran, AT Boothroyd

Abstract:

Resonant X-ray scattering measurements have been performed at the (011) Bragg forbidden reflection of YVO3 at the vanadium K-edge. Data were taken above and below the orbital, magnetic and structural transition occurring at 77 K. Energy spectra calculated by the FDMNES code are shown to be in excellent agreement with our experimental data, conclusively showing the signal to originate from anisotropic tensor of susceptibility scattering; ie. solely due to distortions of the lattice and hence the crystal field. We thus resolve the ambiguous origin of the resonant energy spectra in the literature. © 2010 IOP Publishing Ltd.
More details from the publisher
More details

Soft x-ray diffraction from lattice constrained orbital order in Pr(Sr 0.1Ca0.9)2Mn2O7

Journal of Physics: Conference Series 211 (2010)

Authors:

TAW Beale, SR Bland, RD Johnson, PD Hatton, JC Cezar, SS Dhesi, D Prabhakaran, AT Boothroyd

Abstract:

Controlling orbital occupancy is a fundamental prerequisite for orbitronics. It has been shown in the orthorhombic bilayer manganite Pr(Sr 0.1Ca0.9)2Mn2O7 that the direction of orbital order stripes can be influenced by controlling temperature or through inducing strain in the material. In this paper we have used resonant soft x-ray diffraction at the Mn L-edge to confirm the rotation of the orbital direction TOO2 and furthermore prove that there is no change in the occupied orbital type, however the orbital rotation causes a switch from 3x 2-r2 to 3y2-r2 on a single site. We find that unlike the tetragonal bilayer manganites, where an onset of A-type AFM quenches the orbital order, no such effect is found on the orbital order below TN. © 2010 IOP Publishing Ltd.
More details from the publisher
More details

The temperature evolution of the out-of-plane correlation lengths of charge-stripe ordered La1.725Sr0.275NiO4

Journal of Physics: Conference Series 200:SECTION 1 (2010)

Authors:

PG Freeman, NB Christensen, D Prabhakaran, AT Boothroyd

Abstract:

The temperature dependence of the magnetic order of stripe-ordered La 1.725Sr0.275NiO4 is investigated by neutron diffraction. Upon cooling, the widths of the magnetic Bragg peaks are observed to broaden. The degree of broadening is found to be very different for l = odd-integer and l = even-integer magnetic peaks. We argue that the observed behaviour is a result of competition between magnetic and charge order. © 2010 IOP Publishing Ltd.
More details from the publisher
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 43
  • Page 44
  • Page 45
  • Page 46
  • Current page 47
  • Page 48
  • Page 49
  • Page 50
  • Page 51
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet