Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Professor Daniela Bortoletto

Professor and Head of Particle Physics

Research theme

  • Instrumentation
  • Fundamental particles and interactions

Sub department

  • Particle Physics

Research groups

  • AION/Magis
  • ATLAS
  • Future Colliders
  • Mu3e
  • OPMD
daniela.bortoletto@physics.ox.ac.uk
Telephone: 01865 (2)73635
Denys Wilkinson Building, room 608c1
  • About
  • Students
  • Research
  • Teaching
  • Publications

Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using $pp$ collisions at $\sqrt{s}=13$ TeV

ArXiv 2002.12223 (2020)
Details from ArXiV

Measurement of azimuthal anisotropy of muons from charm and bottom hadrons in pp collisions at sqrt[s]=13  TeV with the ATLAS Detector

Physical Review Letters American Physical Society 124:8 (2020) 82301

Authors:

G Aad, B Abbott, Dc Abbott, A Abed Abud, K Abeling, Dk Abhayasinghe, Sh Abidi, Os AbouZeid, Nl Abraham, H Abramowicz, H Abreu, Y Abulaiti, Bs Acharya, B Achkar, S Adachi, L Adam, C Adam Bourdarios, L Adamczyk, L Adamek, J Adelman, M Adersberger, A Adiguzel, S Adorni, T Adye, Aa Affolder, Y Afik, C Agapopoulou, Mn Agaras, A Aggarwal, C Agheorghiesei, Ja Aguilar-Saavedra, F Ahmadov, Ws Ahmed, X Ai, G Aielli, S Akatsuka, Tpa Åkesson, E Akilli, Av Akimov, K Al Khoury, Gl Alberghi, J Albert, Mj Alconada Verzini, S Alderweireldt, M Aleksa, In Aleksandrov, C Alexa, D Alexandre, T Alexopoulos

Abstract:

The elliptic flow of muons from the decay of charm and bottom hadrons is measured in pp collisions at sqrt[s]=13  TeV using a data sample with an integrated luminosity of 150  pb^{-1} recorded by the ATLAS detector at the LHC. The muons from heavy-flavor decay are separated from light-hadron decay muons using momentum imbalance between the tracking and muon spectrometers. The heavy-flavor decay muons are further separated into those from charm decay and those from bottom decay using the distance-of-closest-approach to the collision vertex. The measurement is performed for muons in the transverse momentum range 4-7 GeV and pseudorapidity range |η|<2.4. A significant nonzero elliptic anisotropy coefficient v_{2} is observed for muons from charm decays, while the v_{2} value for muons from bottom decays is consistent with zero within uncertainties.
More details from the publisher
Details from ORA
More details
More details

Search for dijet resonances in events with an isolated charged lepton using $\sqrt{s} = 13$ TeV proton-proton collision data collected by the ATLAS detector

ArXiv 2002.11325 (2020)
Details from ArXiV

Observation of the associated production of a top quark and a $Z$ boson in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

ArXiv 2002.07546 (2020)
Details from ArXiV

Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in √s=13 TeV pp collisions using the ATLAS detector

European Physical Journal C Springer Nature 80:2 (2020) 123

Authors:

ATLAS Collaboration, G Aad, B Abbott, Alan Barr

Abstract:

A search for the electroweak production of charginos and sleptons decaying into final states with two electrons or muons is presented. The analysis is based on 139 fb−1 of proton–proton collisions recorded by the ATLAS detector at the Large Hadron Collider at s√=13 TeV. Three R-parity-conserving scenarios where the lightest neutralino is the lightest supersymmetric particle are considered: the production of chargino pairs with decays via either W bosons or sleptons, and the direct production of slepton pairs. The analysis is optimised for the first of these scenarios, but the results are also interpreted in the others. No significant deviations from the Standard Model expectations are observed and limits at 95% confidence level are set on the masses of relevant supersymmetric particles in each of the scenarios. For a massless lightest neutralino, masses up to 420 GeV are excluded for the production of the lightest-chargino pairs assuming W-boson-mediated decays and up to 1 TeV for slepton-mediated decays, whereas for slepton-pair production masses up to 700 GeV are excluded assuming three generations of mass-degenerate sleptons.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 200
  • Page 201
  • Page 202
  • Page 203
  • Current page 204
  • Page 205
  • Page 206
  • Page 207
  • Page 208
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet