Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Professor Daniela Bortoletto

Professor and Head of Particle Physics

Research theme

  • Instrumentation
  • Fundamental particles and interactions

Sub department

  • Particle Physics

Research groups

  • AION/Magis
  • ATLAS
  • Future Colliders
  • Mu3e
  • OPMD
daniela.bortoletto@physics.ox.ac.uk
Telephone: 01865 (2)73635
Denys Wilkinson Building, room 608c1
  • About
  • Students
  • Research
  • Teaching
  • Publications

Observation of top-quark pair production in lead-lead collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV with the ATLAS detector

ArXiv 2411.10186 (2024)
Details from ArXiV

Precision measurement of the $B^{0}$ meson lifetime using $B^{0} \rightarrow J/ψK^{*0}$ decays with the ATLAS detector

ArXiv 2411.09962 (2024)
Details from ArXiV

Reconstruction and identification of pairs of collimated $τ$-leptons decaying hadronically using $\sqrt{s}=13$ TeV $pp$ collision data with the ATLAS detector

ArXiv 2411.09357 (2024)
Details from ArXiV

Search for vector-like leptons coupling to first- and second-generation Standard Model leptons in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

ArXiv 2411.07143 (2024)
Details from ArXiV

Search for a resonance decaying into a scalar particle and a Higgs boson in the final state with two bottom quarks and two photons in proton–proton collisions at s = 13 TeV with the ATLAS detector

Journal of High Energy Physics Springer 2024:11 (2024) 47

Authors:

G Aad, E Aakvaag, B Abbott, K Abeling, NJ Abicht, SH Abidi, M Aboelela, A Aboulhorma, H Abramowicz, H Abreu, Y Abulaiti, BS Acharya, A Ackermann, C Adam Bourdarios, L Adamczyk, SV Addepalli, MJ Addison, J Adelman, A Adiguzel, T Adye, AA Affolder, Y Afik, MN Agaras, J Agarwala

Abstract:

A search for the resonant production of a heavy scalar X decaying into a Higgs boson and a new lighter scalar S, through the process X → S(→bb¯)H(→γγ), where the two photons are consistent with the Higgs boson decay, is performed. The search is conducted using an integrated luminosity of 140 fb−1 of proton-proton collision data at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The search is performed over the mass range 170 ≤ mX ≤ 1000 GeV and 15 ≤ mS ≤ 500 GeV. Parameterised neural networks are used to enhance the signal purity and to achieve continuous sensitivity in a domain of the (mX, mS) plane. No significant excess above the expected background is found and 95% CL upper limits are set on the cross section times branching ratio, ranging from 39 fb to 0.09 fb. The largest deviation from the background-only expectation occurs for (mX, mS) = (575, 200) GeV with a local (global) significance of 3.5 (2.0) standard deviations.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 28
  • Page 29
  • Page 30
  • Page 31
  • Current page 32
  • Page 33
  • Page 34
  • Page 35
  • Page 36
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet