Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Professor Daniela Bortoletto

Professor and Head of Particle Physics

Research theme

  • Instrumentation
  • Fundamental particles and interactions

Sub department

  • Particle Physics

Research groups

  • AION/Magis
  • ATLAS
  • Future Colliders
  • Mu3e
  • OPMD
daniela.bortoletto@physics.ox.ac.uk
Telephone: 01865 (2)73635
Denys Wilkinson Building, room 608c1
  • About
  • Students
  • Research
  • Teaching
  • Publications

Search for the associated production of charm quarks and a Higgs boson decaying into a photon pair with the ATLAS detector

ArXiv 2407.1555 (2024)
Details from ArXiV

Inclusive and differential cross-section measurements of t t ¯ Z production in pp collisions at s = 13 TeV with the ATLAS detector, including EFT and spin-correlation interpretations

Journal of High Energy Physics Springer 2024:7 (2024) 163

Authors:

G Aad, B Abbott, K Abeling, NJ Abicht, SH Abidi, A Aboulhorma, H Abramowicz, H Abreu, Y Abulaiti, BS Acharya, C Adam Bourdarios, L Adamczyk, SV Addepalli, MJ Addison, J Adelman, A Adiguzel, T Adye, AA Affolder, Y Afik, MN Agaras, J Agarwala, A Aggarwal, C Agheorghiesei, A Ahmad

Abstract:

Measurements of both the inclusive and differential production cross sections of a top-quark-top-antiquark pair in association with a Z boson (tt¯Z) are presented. Final states with two, three or four isolated leptons (electrons or muons) are targeted. The measurements use the data recorded by the ATLAS detector in pp collisions at s = 13 TeV at the Large Hadron Collider during the years 2015–2018, corresponding to an integrated luminosity of 140 fb−1. The inclusive cross section is measured to be σtt¯Z = 0.86 ± 0.04 (stat.) ± 0.04 (syst.) pb and found to be in agreement with the most advanced Standard Model predictions. The differential measurements are presented as a function of a number of observables that probe the kinematics of the tt¯Z system. Both the absolute and normalised differential cross-section measurements are performed at particle level and parton level for specific fiducial volumes, and are compared with NLO+NNLL theoretical predictions. The results are interpreted in the framework of Standard Model effective field theory and used to set limits on a large number of dimension-6 operators involving the top quark. The first measurement of spin correlations in tt¯Z events is presented: the results are in agreement with the Standard Model expectations, and the null hypothesis of no spin correlations is disfavoured with a significance of 1.8 standard deviations.
More details from the publisher
Details from ORA
More details

Measurement of $t\bar{t}$ production in association with additional $b$-jets in the $eμ$ final state in proton-proton collisions at $\sqrt{s}$=13 TeV with the ATLAS detector

ArXiv 2407.13473 (2024)
Details from ArXiV

Combination of searches for singly and doubly charged Higgs bosons produced via vector-boson fusion in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

ArXiv 2407.10798 (2024)
Details from ArXiV

Constraint on the total width of the Higgs boson from Higgs boson and four-top-quark measurements in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

ArXiv 2407.10631 (2024)
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 35
  • Page 36
  • Page 37
  • Page 38
  • Current page 39
  • Page 40
  • Page 41
  • Page 42
  • Page 43
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet