Search for new particles in final states with a boosted top quark and missing transverse momentum in proton-proton collisions at s = 13 TeV with the ATLAS detector
Journal of High Energy Physics Springer 2024:5 (2024) 263
Abstract:
A search for events with one top quark and missing transverse momentum in the final state is presented. The fully hadronic decay of the top quark is explored by selecting events with a reconstructed boosted top-quark topology produced in association with large missing transverse momentum. The analysis uses 139 fb−1 of proton-proton collision data at a centre-of-mass energy of s = 13 TeV recorded during 2015-2018 by the ATLAS detector at the Large Hadron Collider. The results are interpreted in the context of simplified models for Dark Matter particle production and the single production of a vector-like T quark. Without significant excess relative to the Standard Model expectations, 95% confidence-level upper limits on the corresponding cross-sections are obtained. The production of Dark Matter particles in association with a single top quark is excluded for masses of a scalar (vector) mediator up to 4.3 (2.3) TeV, assuming mχ = 1 GeV and the model couplings λq = 0.6 and λχ = 0.4 (a = 0.5 and gχ = 1). The production of a single vector-like T quark is excluded for masses below 1.8 TeV assuming a coupling to the top quark κT = 0.5 and a branching ratio for T → Zt of 25%.The ATLAS experiment at the CERN Large Hadron Collider: a description of the detector configuration for Run 3
Journal of Instrumentation IOP Publishing 19:05 (2024) P05063
Abstract:
The ATLAS detector is installed in its experimental cavern at Point 1 of the CERN Large Hadron Collider. During Run 2 of the LHC, a luminosity of ℒ = 2 × 1034 cm-2 s-1 was routinely achieved at the start of fills, twice the design luminosity. For Run 3, accelerator improvements, notably luminosity levelling, allow sustained running at an instantaneous luminosity of ℒ = 2 × 1034 cm-2 s-1, with an average of up to 60 interactions per bunch crossing. The ATLAS detector has been upgraded to recover Run 1 single-lepton trigger thresholds while operating comfortably under Run 3 sustained pileup conditions. A fourth pixel layer 3.3 cm from the beam axis was added before Run 2 to improve vertex reconstruction and b-tagging performance. New Liquid Argon Calorimeter digital trigger electronics, with corresponding upgrades to the Trigger and Data Acquisition system, take advantage of a factor of 10 finer granularity to improve triggering on electrons, photons, taus, and hadronic signatures through increased pileup rejection. The inner muon endcap wheels were replaced by New Small Wheels with Micromegas and small-strip Thin Gap Chamber detectors, providing both precision tracking and Level-1 Muon trigger functionality. Trigger coverage of the inner barrel muon layer near one endcap region was augmented with modules integrating new thin-gap resistive plate chambers and smaller-diameter drift-tube chambers. Tile Calorimeter scintillation counters were added to improve electron energy resolution and background rejection. Upgrades to Minimum Bias Trigger Scintillators and Forward Detectors improve luminosity monitoring and enable total proton-proton cross section, diffractive physics, and heavy ion measurements. These upgrades are all compatible with operation in the much harsher environment anticipated after the High-Luminosity upgrade of the LHC and are the first steps towards preparing ATLAS for the High-Luminosity upgrade of the LHC. This paper describes the Run 3 configuration of the ATLAS detector.Total cost of ownership and evaluation of Google cloud resources for the ATLAS experiment at the LHC
ArXiv 2405.13695 (2024)
Performance of the ATLAS forward proton Time-of-Flight detector in Run 2
Journal of Instrumentation IOP Publishing 19:05 (2024) P05054
Abstract:
We present performance studies of the Time-of-Flight (ToF) subdetector of the ATLAS Forward Proton (AFP) detector at the LHC. Efficiencies and resolutions are measured using high-statistics data samples collected at low and moderate pile-up in 2017, the first year when the detectors were installed on both sides of the interaction region. While low efficiencies are observed, of the order of a few percent, the resolutions of the two ToF detectors measured individually are 21 ps and 28 ps, yielding an expected resolution of the longitudinal position of the interaction, z vtx, in the central ATLAS detector of 5.3 ± 0.6 mm. This is in agreement with the observed width of the distribution of the difference between z vtx, measured independently by the central ATLAS tracker and by the ToF detector, of 6.0 ± 2.0 mm.Electron and photon efficiencies in LHC Run 2 with the ATLAS experiment
Journal of High Energy Physics Springer 2024:5 (2024) 162