Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Professor Daniela Bortoletto

Professor and Head of Particle Physics

Research theme

  • Instrumentation
  • Fundamental particles and interactions

Sub department

  • Particle Physics

Research groups

  • AION/Magis
  • ATLAS
  • Future Colliders
  • Mu3e
  • OPMD
daniela.bortoletto@physics.ox.ac.uk
Telephone: 01865 (2)73635
Denys Wilkinson Building, room 608c1
  • About
  • Students
  • Research
  • Teaching
  • Publications

Operational experience, improvements, and performance of the CDF Run II silicon vertex detector

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 729 (2013) 153-181

Authors:

T Aaltonen, S Behari, A Boveia, B Brau, G Bolla, D Bortoletto, C Calancha, S Carron, S Cihangir, M Corbo, D Clark, B Di Ruzza, R Eusebi, JP Fernandez, JC Freeman, JE Garcia, M Garcia-Sciveres, D Glenzinski, O González, S Grinstein, M Hartz, M Herndon, C Hill, A Hocker, U Husemann, J Incandela, C Issever, S Jindariani, TR Junk, K Knoepfel, JD Lewis, RS Lu, R Martínez-Ballarín, M Mathis, M Mattson, P Merkel, L Miller, A Mitra, MN Mondragon, R Moore, JR Mumford, S Nahn, J Nielsen, TK Nelson, V Pavlicek, J Pursley, I Redondo, R Roser, K Schultz, J Slaughter, J Spalding, M Stancari, M Stanitzki, D Stuart, A Sukhanov, R Tesarek, K Treptow, R Wallny, P Wilson, S Worm

Abstract:

The Collider Detector at Fermilab (CDF) pursues a broad physics program at Fermilab's Tevatron collider. Between Run II commissioning in early 2001 and the end of operations in September 2011, the Tevatron delivered 12 fb-1 of integrated luminosity of pp̄ collisions at s=1.96TeV. The physics at CDF includes precise measurements of the masses of the top quark and W boson, measurement of CP violation and Bs mixing, and searches for Higgs bosons and new physics signatures, all of which require heavy flavor tagging with large charged particle tracking acceptance. To realize these goals, in 2001 CDF installed eight layers of silicon microstrip detectors around its interaction region. These detectors were designed for 2-5 years of operation, radiation doses up to 2 Mrad (0.02 Gy), and were expected to be replaced in 2004. The sensors were not replaced, and the Tevatron run was extended for several years beyond its design, exposing the sensors and electronics to much higher radiation doses than anticipated. In this paper we describe the operational challenges encountered over the past 10 years of running the CDF silicon detectors, the preventive measures undertaken, and the improvements made along the way to ensure their optimal performance for collecting high quality physics data. In addition, we describe the quantities and methods used to monitor radiation damage in the sensors for optimal performance and summarize the detector performance quantities important to CDF's physics program, including vertex resolution, heavy flavor tagging, and silicon vertex trigger performance. © 2013 Elsevier B.V.
More details from the publisher
More details

Search for a Higgs boson decaying into a Z and a photon in pp collisions at √s=7 and 8TeV

Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics 726:4-5 (2013) 587-609

Authors:

S Chatrchyan, V Khachatryan, AM Sirunyan, A Tumasyan, W Adam, T Bergauer, M Dragicevic, J Erö, C Fabjan, M Friedl, R Frühwirth, VM Ghete, N Hörmann, J Hrubec, M Jeitler, W Kiesenhofer, V Knünz, M Krammer, I Krätschmer, D Liko, I Mikulec, D Rabady, B Rahbaran, C Rohringer, H Rohringer, R Schöfbeck, J Strauss, A Taurok, W Treberer-Treberspurg, W Waltenberger, CE Wulz, V Mossolov, N Shumeiko, J Suarez Gonzalez, S Alderweireldt, M Bansal, S Bansal, T Cornelis, EA De Wolf, X Janssen, A Knutsson, S Luyckx, L Mucibello, S Ochesanu, B Roland, R Rougny, Z Staykova, H Van Haevermaet, P Van Mechelen, N Van Remortel, A Van Spilbeeck, F Blekman, S Blyweert, J D'Hondt, A Kalogeropoulos, J Keaveney, M Maes, A Olbrechts, S Tavernier, W Van Doninck, P Van Mulders, GP Van Onsem, I Villella, C Caillol, B Clerbaux, G De Lentdecker, L Favart, APR Gay, T Hreus, A Léonard, PE Marage, A Mohammadi, L Perniè, T Reis, T Seva, L Thomas, C Vander Velde, P Vanlaer, J Wang, V Adler, K Beernaert, L Benucci, A Cimmino, S Costantini, S Dildick, G Garcia, B Klein, J Lellouch, A Marinov, J Mccartin, AA Ocampo Rios, D Ryckbosch, M Sigamani, N Strobbe, F Thyssen, M Tytgat, S Walsh, E Yazgan, N Zaganidis, S Basegmez

Abstract:

A search for a Higgs boson decaying into a Z boson and a photon is described. The analysis is performed using proton-proton collision datasets recorded by the CMS detector at the LHC. Events were collected at center-of-mass energies of 7 TeV and 8 TeV, corresponding to integrated luminosities of 5.0fb-1 and 19.6fb-1, respectively. The selected events are required to have opposite-sign electron or muon pairs. No excess above standard model predictions has been found in the 120-160 GeV mass range and the first limits on the Higgs boson production cross section times the H→Zγ branching fraction at the LHC have been derived. The observed at 95% confidence level limits are between about 4 and 25 times the standard model cross section times the branching fraction. For a standard model Higgs boson mass of 125 GeV the expected limit at the 95% confidence level is 10 and the observed limit is 9.5. Models predicting the Higgs boson production cross section times the H→Zγ branching fraction to be larger than one order of magnitude of the standard model prediction are excluded for most of the 125-157 GeV mass range. © 2013 CERN.
More details from the publisher
More details

Search for a non-standard-model Higgs boson decaying to a pair of new light bosons in four-muon final states

Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics 726:4-5 (2013) 564-586

Authors:

S Chatrchyan, V Khachatryan, AM Sirunyan, A Tumasyan, W Adam, E Aguilo, T Bergauer, M Dragicevic, J Erö, C Fabjan, M Friedl, R Frühwirth, VM Ghete, J Hammer, N Hörmann, J Hrubec, M Jeitler, W Kiesenhofer, V Knünz, M Krammer, I Krätschmer, D Liko, I Mikulec, M Pernicka, B Rahbaran, C Rohringer, H Rohringer, R Schöfbeck, J Strauss, A Taurok, W Waltenberger, G Walzel, E Widl, CE Wulz, V Mossolov, N Shumeiko, J Suarez Gonzalez, M Bansal, S Bansal, T Cornelis, EA De Wolf, X Janssen, S Luyckx, L Mucibello, S Ochesanu, B Roland, R Rougny, M Selvaggi, Z Staykova, H Van Haevermaet, P Van Mechelen, N Van Remortel, A Van Spilbeeck, F Blekman, S Blyweert, J D'Hondt, R Gonzalez Suarez, A Kalogeropoulos, M Maes, A Olbrechts, W Van Doninck, P Van Mulders, GP Van Onsem, I Villella, B Clerbaux, G De Lentdecker, V Dero, APR Gay, T Hreus, A Léonard, PE Marage, A Mohammadi, T Reis, L Thomas, G Vander Marcken, C Vander Velde, P Vanlaer, J Wang, V Adler, K Beernaert, A Cimmino, S Costantini, G Garcia, M Grunewald, B Klein, J Lellouch, A Marinov, J Mccartin, AA Ocampo Rios, D Ryckbosch, N Strobbe, F Thyssen, M Tytgat, P Verwilligen, S Walsh, E Yazgan, N Zaganidis, S Basegmez, G Bruno, R Castello

Abstract:

Results are reported from a search for non-standard-model Higgs boson decays to pairs of new light bosons, each of which decays into the μ+μ- final state. The new bosons may be produced either promptly or via a decay chain. The data set corresponds to an integrated luminosity of 5.3 fb-1 of proton-proton collisions at s=7 TeV, recorded by the CMS experiment at the LHC in 2011. Such Higgs boson decays are predicted in several scenarios of new physics, including supersymmetric models with extended Higgs sectors or hidden valleys. Thus, the results of the search are relevant for establishing whether the new particle observed in Higgs boson searches at the LHC has the properties expected for a standard model Higgs boson. No excess of events is observed with respect to the yields expected from standard model processes. A model-independent upper limit of 0.86±0.06 fb on the product of the cross section times branching fraction times acceptance is obtained. The results, which are applicable to a broad spectrum of new physics scenarios, are compared with the predictions of two benchmark models as functions of a Higgs boson mass larger than 86 GeV/c2 and of a new light boson mass within the range 0.25-3.55 GeV/c2. © 2013 CERN.
More details from the publisher
More details

Search for exotic resonances decaying into WZ/ZZ in pp collisions at √s=7 TeV

Journal of High Energy Physics 2013:2 (2013)

Authors:

S Chatrchyan, V Khachatryan, AM Sirunyan, A Tumasyan, W Adam, E Aguilo, T Bergauer, M Dragicevic, J Erö, C Fabjan, M Friedl, R Frühwirth, VM Ghete, J Hammer, N Hörmann, J Hrubec, M Jeitler, W Kiesenhofer, V Knünz, M Krammer, I Krätschmer, D Liko, I Mikulec, M Pernicka, B Rahbaran, C Rohringer, H Rohringer, R Schöfbeck, J Strauss, A Taurok, W Waltenberger, G Walzel, E Widl, CE Wulz, V Mossolov, N Shumeiko, J Suarez Gonzalez, M Bansal, S Bansal, T Cornelis, EA De Wolf, X Janssen, S Luyckx, L Mucibello, S Ochesanu, B Roland, R Rougny, M Selvaggi, Z Staykova, H Van Haevermaet, P Van Mechelen, N Van Remortel, A Van Spilbeeck, F Blekman, S Blyweert, J D'hondt, R Gonzalez Suarez, A Kalogeropoulos, M Maes, A Olbrechts, W Van Doninck, P Van Mulders, GP Van Onsem, I Villella, B Clerbaux, G De Lentdecker, V Dero, APR Gay, T Hreus, A Léonard, PE Marage, A Mohammadi, T Reis, L Thomas, G Vander Marcken, C Vander Velde, P Vanlaer, J Wang, V Adler, K Beernaert, A Cimmino, S Costantini, G Garcia, M Grunewald, B Klein, J Lellouch, A Marinov, J Mccartin, AA Ocampo Rios, D Ryckbosch, N Strobbe, F Thyssen, M Tytgat, P Verwilligen, S Walsh, E Yazgan, N Zaganidis, S Basegmez, G Bruno, R Castello

Abstract:

A search for new exotic particles decaying to the VZ final state is performed, where V is either a W or a Z boson decaying into two overlapping jets and the Z decays into a pair of electrons, muons or neutrinos. The analysis uses a data sample of pp collisions corresponding to an integrated luminosity of 5 fb-1 collected by the CMS experiment at the LHC at √s=7 TeV in 2011. No significant excess is observed in the mass distribution of the VZ candidates compared with the background expectation from standard model processes. Model-dependent upper limits at the 95% confidence level are set on the product of the cross section times the branching fraction of hypothetical particles decaying to the VZ final state as a function of mass. Sequential standard model W′ bosons with masses between 700 and 940 GeV are excluded. In the Randall-Sundrum model for graviton resonances with a coupling parameter of 0.05, masses between 750 and 880 GeV are also excluded. © 2013 CERN for the benefit of the CMS collaboration.
More details from the publisher
More details

Search for heavy quarks decaying into a top quark and a W or Z boson using lepton + jets events in pp collisions at √s = 7 TeV

Journal of High Energy Physics 2013:1 (2013)

Authors:

S Chatrchyan, V Khachatryan, AM Sirunyan, A Tumasyan, W Adam, E Aguilo, T Bergauer, M Dragicevic, J Erö, C Fabjan, M Friedl, R Frühwirth, VM Ghete, J Hammer, N Hörmann, J Hrubec, M Jeitler, W Kiesenhofer, V Knünz, M Krammer, I Krätschmer, D Liko, I Mikulec, M Pernicka, B Rahbaran, C Rohringer, H Rohringer, R Schöfbeck, J Strauss, A Taurok, W Waltenberger, G Walzel, E Widl, CE Wulz, V Mossolov, N Shumeiko, J Suarez Gonzalez, M Bansal, S Bansal, T Cornelis, EA De Wolf, X Janssen, S Luyckx, L Mucibello, S Ochesanu, B Roland, R Rougny, M Selvaggi, Z Staykova, H Van Haevermaet, P Van Mechelen, N Van Remortel, A Van Spilbeeck, F Blekman, S Blyweert, J D'Hondt, R Gonzalez Suarez, A Kalogeropoulos, M Maes, A Olbrechts, W Van Doninck, P Van Mulders, GP Van Onsem, I Villella, B Clerbaux, G De Lentdecker, V Dero, APR Gay, T Hreus, A Léonard, PE Marage, A Mohammadi, T Reis, L Thomas, G Vander Marcken, C Vander Velde, P Vanlaer, J Wang, V Adler, K Beernaert, A Cimmino, S Costantini, G Garcia, M Grunewald, B Klein, J Lellouch, A Marinov, J Mccartin, AA Ocampo Rios, D Ryckbosch, N Strobbe, F Thyssen, M Tytgat, P Verwilligen, S Walsh, E Yazgan, N Zaganidis, S Basegmez, G Bruno, R Castello

Abstract:

Results are presented from a search for the pair-production of heavy quarks, QQ̄, that decay exclusively into a top quark and a W or Z boson. The search is performed using a sample of proton-proton collisions at √s = 7 TeV corresponding to an integrated luminosity of 5.0 fb-1, collected by the Compact Muon Solenoid experiment. The signal region is defined using a sample of events containing one electron or muon, missing transverse momentum, and at least four jets with large transverse momenta, where one jet is likely to originate from the decay of a bottom quark. No significant excess of events is observed with respect to the standard model expectations. Assuming a strong pair-production mechanism, quark masses below 675 (625) GeV decaying into tW (tZ) are excluded at the 95 % confidence level.[Figure not available: see fulltext.] © 2013 CERN for the benefit of the CMS collaboration.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 492
  • Page 493
  • Page 494
  • Page 495
  • Current page 496
  • Page 497
  • Page 498
  • Page 499
  • Page 500
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet