Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Professor Daniela Bortoletto

Professor and Head of Particle Physics

Research theme

  • Instrumentation
  • Fundamental particles and interactions

Sub department

  • Particle Physics

Research groups

  • AION/Magis
  • ATLAS
  • Future Colliders
  • Mu3e
  • OPMD
daniela.bortoletto@physics.ox.ac.uk
Telephone: 01865 (2)73635
Denys Wilkinson Building, room 608c1
  • About
  • Students
  • Research
  • Teaching
  • Publications

Calibration of a soft secondary vertex tagger using proton-proton collisions at $\sqrt{s}=$13 TeV with the ATLAS detector

ArXiv 2405.03253 (2024)
Details from ArXiV

Improving topological cluster reconstruction using calorimeter cell timing in ATLAS

European Physical Journal C Springer Nature 84:5 (2024) 455
More details from the publisher
More details

A search for R-parity-violating supersymmetry in final states containing many jets in pp collisions at s = 13 TeV with the ATLAS detector

Journal of High Energy Physics Springer 2024:5 (2024) 3

Authors:

G Aad, B Abbott, K Abeling, NJ Abicht, SH Abidi, A Aboulhorma, H Abramowicz, H Abreu, Y Abulaiti, BS Acharya, C Adam Bourdarios, L Adamczyk, SV Addepalli, MJ Addison, J Adelman, A Adiguzel, T Adye, AA Affolder, Y Afik, MN Agaras, J Agarwala, A Aggarwal, C Agheorghiesei, A Ahmad

Abstract:

A search for R-parity-violating supersymmetry in final states with high jet multiplicity is presented. The search uses 140 fb−1 of proton-proton collision data at s = 13 TeV collected by the ATLAS experiment during Run 2 of the Large Hadron Collider. The results are interpreted in the context of R-parity-violating supersymmetry models that feature prompt gluino-pair production decaying directly to three jets each or decaying to two jets and a neutralino which subsequently decays promptly to three jets. No significant excess over the Standard Model expectation is observed and exclusion limits at the 95% confidence level are extracted. Gluinos with masses up to 1800 GeV are excluded when decaying directly to three jets. In the cascade scenario, gluinos with masses up to 2340 GeV are excluded for a neutralino with mass up to 1250 GeV.
More details from the publisher
Details from ORA
More details

Quad-module characterization with the MALTA monolithic pixel chip

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Elsevier 1064 (2024) 169306

Authors:

F Dachs, AM Zoubir, A Sharma, Daniela Bortoletto

Abstract:

The MALTA silicon pixel detector combines a depleted monolithic active pixel sensor (DMAPS) with a fully asynchronous front-end and readout. It features a high granularity pixel matrix with a 36.4 μm symmetric pixel pitch, low power consumption of <1 μW∕pixel and low material budget with detector thicknesses as little as 50 μm. It achieves a radiation hardness to 100MRad TID and more than 1 × 10E15 1 MeV 𝑛eq∕cm2 with a time resolution of <2 ns (Pernegger et al., 2023).

In order to cover large sensitive areas efficiently with a minimum of power and data connections the development of modules, comprising of up to 4 MALTA detectors, is studied.

This contribution presents the beam test performance of parallel and serial powered MALTA 4-chip modules in an effort to characterize the sensor’s chip-to-chip data and power transmission and prepare the production of a first prototype of an ultra-light weight 4-chip module on a flexible circuit with next generation MALTA2 sensors.

More details from the publisher
Details from ORA

Beam-induced backgrounds measured in the ATLAS detector during local gas injection into the LHC beam vacuum

ArXiv 2405.05054 (2024)
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 57
  • Page 58
  • Page 59
  • Page 60
  • Current page 61
  • Page 62
  • Page 63
  • Page 64
  • Page 65
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet