Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Professor Daniela Bortoletto

Professor and Head of Particle Physics

Research theme

  • Instrumentation
  • Fundamental particles and interactions

Sub department

  • Particle Physics

Research groups

  • AION/Magis
  • ATLAS
  • Future Colliders
  • Mu3e
  • OPMD
daniela.bortoletto@physics.ox.ac.uk
Telephone: 01865 (2)73635
Denys Wilkinson Building, room 608c1
  • About
  • Students
  • Research
  • Teaching
  • Publications

ILC Vertex Tracker R&D

Office of Scientific and Technical Information (OSTI)

Authors:

Marco Battaglia, Jean-Marie Bussat, Devis Contarato, Peter Denes, Lindsay Glesener, Leo Greiner, Benjamin Hooberman, Derek Shuman, Lauren Tompkins, Chinh Vu, Dario Bisello, Piero Giubilato, Devis Pantano, Marco Costa, Alessandro La Rosa, Gino Bolla, Daniela Bortoletto, Isaac Children
More details from the publisher

Sensor Compendium

Office of Scientific and Technical Information (OSTI)

Authors:

M Artuso, et al.
More details from the publisher

Technical design of the phase I Mu3e experiment

Authors:

K Arndt, H Augustin, P Baesso, N Berger, F Berg, C Betancourt, D Bortoletto, A Bravar, K Briggl, D vom Bruch, A Buonaura, F Cadoux, C Chavez Barajas, H Chen, K Clark, P Cooke, S Corrodi, A Damyanova, Y Demets, S Dittmeier, P Eckert, F Ehrler, D Fahrni, L Gerritzen, J Goldstein, D Gottschalk, C Grab, R Gredig, A Groves, J Hammerich, U Hartenstein, U Hartmann, H Hayward, A Herkert, G Hesketh, S Hetzel, M Hildebrandt, Z Hodge, A Hofer, Qh Huang, S Hughes, L Huth, Dm Immig, T Jones, M Jones, H-C Kästli, M Köppel, P-R Kettle, M Kiehn, S Kilani

Abstract:

The Mu3e experiment aims to find or exclude the lepton flavour violating decay $\mu \rightarrow eee$ at branching fractions above $10^{-16}$. A first phase of the experiment using an existing beamline at the Paul Scherrer Institute (PSI) is designed to reach a single event sensitivity of $2\cdot 10^{-15}$. We present an overview of all aspects of the technical design and expected performance of the phase~I Mu3e detector. The high rate of up to $10^{8}$ muon decays per second and the low momenta of the decay electrons and positrons pose a unique set of challenges, which we tackle using an ultra thin tracking detector based on high-voltage monolithic active pixel sensors combined with scintillating fibres and tiles for precise timing measurements.
More details from the publisher
More details
Details from ArXiV

Technical design of the phase I Mu3e experiment

Authors:

K Arndt, H Augustin, P Baesso, N Berger, F Berg, C Betancourt, D Bortoletto, A Bravar, K Briggl, D vom Bruch, A Buonaura, F Cadoux, C Chavez Barajas, H Chen, K Clark, P Cooke, S Corrodi, A Damyanova, Y Demets, S Dittmeier, P Eckert, F Ehrler, D Fahrni, L Gerritzen, J Goldstein, D Gottschalk, C Grab, R Gredig, A Groves, J Hammerich, U Hartenstein, U Hartmann, H Hayward, A Herkert, G Hesketh, S Hetzel, M Hildebrandt, Z Hodge, A Hofer, Qh Huang, S Hughes, L Huth, Dm Immig, T Jones, M Jones, H-C Kästli, M Köppel, P-R Kettle, M Kiehn, S Kilani

Abstract:

The Mu3e experiment aims to find or exclude the lepton flavour violating decay $\mu \rightarrow eee$ at branching fractions above $10^{-16}$. A first phase of the experiment using an existing beamline at the Paul Scherrer Institute (PSI) is designed to reach a single event sensitivity of $2\cdot 10^{-15}$. We present an overview of all aspects of the technical design and expected performance of the phase~I Mu3e detector. The high rate of up to $10^{8}$ muon decays per second and the low momenta of the decay electrons and positrons pose a unique set of challenges, which we tackle using an ultra thin tracking detector based on high-voltage monolithic active pixel sensors combined with scintillating fibres and tiles for precise timing measurements.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 886
  • Page 887
  • Page 888
  • Page 889
  • Page 890
  • Page 891
  • Page 892
  • Page 893
  • Current page 894

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet