Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
A VUV sub-micron hotspot for photoemission spectroscopy

Vacuum ultraviolet (VUV) lasers have exhibited great potential as the light source for various spectroscopies, which, if they can be focused into a smaller beam spot, will not only allow investigation of mesoscopic materials but also find applications in manufacture of nano-objects with excellent precision. Towards this goal, scientists in China invented a 177 nm VUV laser system that can achieve a record-small (<1 μm) focal spot at a long focal length (~45 mm). This system can be re-equipped for usage in low-cost ARPES and might benefit quantum materials, condensed matter physics and nanophotonics.

Prof Yulin Chen

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Electronic structures and photoemission spectroscopy
yulin.chen@physics.ox.ac.uk
Clarendon Laboratory, room RM263, Mullard Bldg.
Recent publications
  • About
  • Publications

Unveiling Electronic Correlation and the Ferromagnetic Superexchange Mechanism in the van der Waals Crystal CrSiTe3

Physical Review Letters American Physical Society (APS) 123:4 (2019) 047203

Authors:

Jiaxin Zhang, Xiaochan Cai, Wei Xia, Aiji Liang, Junwei Huang, Chengwei Wang, Lexian Yang, Hongtao Yuan, Yulin Chen, Shilei Zhang, Yanfeng Guo, Zhongkai Liu, Gang Li
More details from the publisher
More details
More details

Strong spin-orbit coupling and Dirac nodal lines in the three-dimensional electronic structure of metallic rutile IrO2

Physical Review B American Physical Society (APS) 99:19 (2019) 195106

Authors:

X Xu, J Jiang, WJ Shi, Vicky Süß, C Shekhar, SC Sun, YJ Chen, S-K Mo, C Felser, BH Yan, HF Yang, ZK Liu, Y Sun, LX Yang, YL Chen
More details from the publisher
More details

Progress of ARPES study on topological semimetals

Acta Physica Sinica Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences 68:22 (2019) 227102

Authors:

Tao Deng, Hai-Feng Yang, Jing Zhang, Yi-Wei Li, Le-Xian Yang, Zhong-Kai Liu, Yu-Lin Chen
More details from the publisher

Experimental observation of conductive edge states in weak topological insulator candidate HfTe5

APL Materials AIP Publishing 6:12 (2018) 121111

Authors:

S Liu, MX Wang, C Chen, X Xu, J Jiang, LX Yang, HF Yang, YY Lv, J Zhou, YB Chen, SH Yao, MH Lu, YF Chen, C Felser, BH Yan, ZK Liu, YL Chen
More details from the publisher
More details

Targeted exome sequencing identified a novel mutation hotspot and a deletion in Chinese primary hypertrophic osteoarthropathy patients.

Clinica chimica acta; international journal of clinical chemistry 487 (2018) 264-269

Authors:

Yulin Chen, Guoqiang Li, Yufei Xu, Tingting Yu, Yi Zhang, Niu Li, Ru-En Yao, Yunfang Zhou, Xiumin Wang, Yiping Shen, Lei Yin, Jian Wang

Abstract:

Background

Primary hypertrophic osteoarthropathy (PHO) is a genetically and clinically heterogeneous systematic disorder caused by mutations in genes HPGD and SLCO2A1. The purpose of the present study is to provide useful information for the early and precise diagnosis of PHO and identify causative mutations in Chinese PHO children.

Methods and results

The clinical manifestations, radiographic features of seven Chinese pediatric patients were systematically analyzed. Targeted exome sequencing identified a previously reported c.310_311delCT mutation and a novel common splicing site mutation c.324 + 5G > A in the HPGD gene. Relative quantitative real time PCR validated a novel deletion of the exon 4 in the same gene. Neither mutations nor structural variations in the gene SLCO2A1 were detected.

Conclusions

In the present study, homozygous or compound heterozygous HPGD mutations were identified in seven Chinese pediatric patients, suggesting an autosomal recessive inheritance. The c.310_311delCT mutation and the splicing site mutation c.324 + 5G > A were likely to be mutational hotspots in Chinese PHO patients. For the first time, a structural variation of the HPGD gene was reported. Homozygous, compound heterozygous mutations or structural variation identified in the HPGD gene proposed that targeted exome sequencing may be a preferable method for pediatric PHO diagnosis and mutation analysis.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 27
  • Page 28
  • Page 29
  • Page 30
  • Current page 31
  • Page 32
  • Page 33
  • Page 34
  • Page 35
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet