Photonic topological insulator with broken time-reversal symmetry.
Proceedings of the National Academy of Sciences of the United States of America 113:18 (2016) 4924-4928
Abstract:
A topological insulator is a material with an insulating interior but time-reversal symmetry-protected conducting edge states. Since its prediction and discovery almost a decade ago, such a symmetry-protected topological phase has been explored beyond electronic systems in the realm of photonics. Electrons are spin-1/2 particles, whereas photons are spin-1 particles. The distinct spin difference between these two kinds of particles means that their corresponding symmetry is fundamentally different. It is well understood that an electronic topological insulator is protected by the electron's spin-1/2 (fermionic) time-reversal symmetry [Formula: see text] However, the same protection does not exist under normal circumstances for a photonic topological insulator, due to photon's spin-1 (bosonic) time-reversal symmetry [Formula: see text] In this work, we report a design of photonic topological insulator using the Tellegen magnetoelectric coupling as the photonic pseudospin orbit interaction for left and right circularly polarized helical spin states. The Tellegen magnetoelectric coupling breaks bosonic time-reversal symmetry but instead gives rise to a conserved artificial fermionic-like-pseudo time-reversal symmetry, Tp ([Formula: see text]), due to the electromagnetic duality. Surprisingly, we find that, in this system, the helical edge states are, in fact, protected by this fermionic-like pseudo time-reversal symmetry Tp rather than by the bosonic time-reversal symmetry Tb This remarkable finding is expected to pave a new path to understanding the symmetry protection mechanism for topological phases of other fundamental particles and to searching for novel implementations for topological insulators.Electronic Structure, Surface Doping, and Optical Response in Epitaxial WSe2 Thin Films.
Nano letters 16:4 (2016) 2485-2491
Abstract:
High quality WSe2 films have been grown on bilayer graphene (BLG) with layer-by-layer control of thickness using molecular beam epitaxy. The combination of angle-resolved photoemission, scanning tunneling microscopy/spectroscopy, and optical absorption measurements reveal the atomic and electronic structures evolution and optical response of WSe2/BLG. We observe that a bilayer of WSe2 is a direct bandgap semiconductor, when integrated in a BLG-based heterostructure, thus shifting the direct-indirect band gap crossover to trilayer WSe2. In the monolayer limit, WSe2 shows a spin-splitting of 475 meV in the valence band at the K point, the largest value observed among all the MX2 (M = Mo, W; X = S, Se) materials. The exciton binding energy of monolayer-WSe2/BLG is found to be 0.21 eV, a value that is orders of magnitude larger than that of conventional three-dimensional semiconductors, yet small as compared to other two-dimensional transition metal dichalcogennides (TMDCs) semiconductors. Finally, our finding regarding the overall modification of the electronic structure by an alkali metal surface electron doping opens a route to further control the electronic properties of TMDCs.Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity.
Nature communications 7 (2016) 10699
Abstract:
Graphene with ultra-high carrier mobility and ultra-short photoresponse time has shown remarkable potential in ultrafast photodetection. However, the broad and weak optical absorption (∼ 2.3%) of monolayer graphene hinders its practical application in photodetectors with high responsivity and selectivity. Here we demonstrate that twisted bilayer graphene, a stack of two graphene monolayers with an interlayer twist angle, exhibits a strong light-matter interaction and selectively enhanced photocurrent generation. Such enhancement is attributed to the emergence of unique twist-angle-dependent van Hove singularities, which are directly revealed by spatially resolved angle-resolved photoemission spectroscopy. When the energy interval between the van Hove singularities of the conduction and valance bands matches the energy of incident photons, the photocurrent generated can be significantly enhanced (up to ∼ 80 times with the integration of plasmonic structures in our devices). These results provide valuable insight for designing graphene photodetectors with enhanced sensitivity for variable wavelength.Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family.
Nature materials Nature Publishing Groupt 15:1 (2016) 27-31
Abstract:
Topological Weyl semimetals (TWSs) represent a novel state of topological quantum matter which not only possesses Weyl fermions (massless chiral particles that can be viewed as magnetic monopoles in momentum space) in the bulk and unique Fermi arcs generated by topological surface states, but also exhibits appealing physical properties such as extremely large magnetoresistance and ultra-high carrier mobility. Here, by performing angle-resolved photoemission spectroscopy (ARPES) on NbP and TaP, we directly observed their band structures with characteristic Fermi arcs of TWSs. Furthermore, by systematically investigating NbP, TaP and TaAs from the same transition metal monopnictide family, we discovered their Fermiology evolution with spin-orbit coupling (SOC) strength. Our experimental findings not only reveal the mechanism to realize and fine-tune the electronic structures of TWSs, but also provide a rich material base for exploring many exotic physical phenomena (for example, chiral magnetic effects, negative magnetoresistance, and the quantum anomalous Hall effect) and novel future applications.Experimental observation of incoherent-coherent crossover and orbital-dependent band renormalization in iron chalcogenide superconductors
Physical Review B American Physical Society (APS) 92:23 (2015) 235138