Field-induced nematic-like magnetic transition in an iron pnictide superconductor, Ca$_{10}$(Pt$_{3}$As$_{8}$)((Fe$_{1-x}$Pt$_{x}$)$_{2}$As$_{2}$)$_{5}$
ArXiv 1310.3728 (2013)
Abstract:
We report a high magnetic field study up to 55 T of the nearly optimally doped iron-pnictide superconductor Ca$_{10}$(Pt$_{3}$As$_{8}$) ((Fe$_{1-x}$Pt$_{x}$)$_{2}$As$_{2}$)$_{5}$ (x=0.078(6)) with a Tc 10 K using magnetic torque, tunnel diode oscillator technique and transport measurements. We determine the superconducting phase diagram, revealing an anisotropy of the irreversibility field up to a factor of 10 near Tc and signatures of multiband superconductivity. Unexpectedly, we find a spin-flop like anomaly in magnetic torque at 22 T, when the magnetic field is applied perpendicular to the ab planes, which becomes significantly more pronounced as the temperature is lowered to 0.33 K. As our superconducting sample lies well outside the antiferromagnetic region of the phase diagram, the observed field-induced transition in torque indicates a spin-flop transition not of long-range ordered moments, but of nematic-like antiferromagnetic fluctuations.Quasiparticle Mass Enhancement Close to the Quantum Critical Point in BaFe2(As1-xP_x)_2
Phys. Rev. Lett. American Physical Society 110:25 (2013) 257002-257002
Quasiparticle mass enhancement close to the quantum critical point in BaFe$_2$(As$_{1-x}$P$_x$)$_2$
(2013)
Iron-based superconductors in high magnetic fields
Comptes Rendus Physique 14:1 (2013) 94-105
Abstract:
Here we review measurements of the normal and superconducting state properties of iron-based superconductors using high magnetic fields. We discuss the various physical mechanisms that limit superconductivity in high fields, and the information on the superconducting state that can be extracted from the upper critical field, but also how thermal fluctuations affect its determination by resistivity and specific heat measurements. We also discuss measurements of the normal state electronic structure focusing on measurement of quantum oscillations, particularly the de Haas-van Alphen effect. These results have determined very accurately, the topology of the Fermi surface and the quasi-particle masses in a number of different iron-based superconductors, from the 1111, 122 and 111 families. © 2012 Académie des sciences.Study of the structural, electric and magnetic properties of Mn-doped Bi 2 Te 3 single crystals
New Journal of Physics 15 (2013) 10