Quantum Gravity Constraints on Inflation
ArXiv 1203.5476 (2012)
Abstract:
We study quantum gravity constraints on inflationary model building. Our
approach is based on requiring the entropy associated to a given inflationary
model to be less than that of the de Sitter entropy. We give two prescriptions
for determining the inflationary entropy, based on either `bits per unit area'
or entanglement entropy. The existence of transPlanckian flat directions,
necessary for large tensor modes in the CMB, correlates with an inflationary
entropy greater than that allowed by de Sitter space. Independently these
techniques also constrain or exclude de Sitter models with large-rank gauge
groups and high UV cutoffs, such as racetrack inflation or the KKLT
construction.