General Analysis of LARGE Volume Scenarios with String Loop Moduli Stabilisation
ArXiv 0805.1029 (2008)
Abstract:
We study the topological conditions for general Calabi-Yaus to get a non-supersymmetric AdS exponentially large volume minimum of the scalar potential in flux compactifications of IIB string theory. We show that negative Euler number and the existence of at least one blow-up mode resolving point-like singularities are necessary and sufficient conditions for moduli stabilisation with exponentially large volumes. We also analyse the general effects of string loop corrections on this scenario. While the combination of alpha' and nonperturbative corrections are sufficient to stabilise blow-up modes and the overall volume, quantum corrections are needed to stabilise other directions transverse to the overall volume. This allows exponentially large volume minima to be realised for fibration Calabi-Yaus, with the various moduli of the fibration all being stabilised at exponentially large values. String loop corrections may also play a role in stabilising 4-cycles which support chiral matter and cannot enter directly into the non-perturbative superpotential. We illustrate these ideas by studying the scalar potential for various Calabi-Yau three-folds including K3 fibrations and briefly discuss the potential phenomenological and cosmological implications of our results.General Analysis of LARGE Volume Scenarios with String Loop Moduli Stabilisation
(2008)
Measuring Smuon-Selectron Mass Splitting at the LHC and Patterns of Supersymmetry Breaking
ArXiv 0801.3666 (2008)
Abstract:
With sufficient data, Large Hadron Collider (LHC) experiments can constrain the selectron-smuon mass splitting through differences in the di-electron and di-muon edges from supersymmetry (SUSY) cascade decays. We study the sensitivity of the LHC to this mass splitting, which within mSUGRA may be constrained down to O(10^{-4}) for 30 fb^{-1} of integrated luminosity. Over substantial regions of SUSY breaking parameter space the fractional edge splitting can be significantly enhanced over the fractional mass splitting. Within models where the selectron and smuon are constrained to be universal at a high scale, edge splittings up to a few percent may be induced by renormalisation group effects and may be significantly discriminated from zero. The edge splitting provides important information about high-scale SUSY breaking terms and should be included in any fit of LHC data to high-scale models.Measuring Smuon-Selectron Mass Splitting at the LHC and Patterns of Supersymmetry Breaking
(2008)
HIERARCHY PROBLEMS IN STRING THEORY AND LARGE VOLUME MODELS
Modern Physics Letters A World Scientific Publishing 23:01 (2008) 1-16