Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Professor Joseph Conlon

Professor of Theoretical Physics

Research theme

  • Particle astrophysics & cosmology
  • Fundamental particles and interactions
  • Fields, strings, and quantum dynamics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
Joseph.Conlon@physics.ox.ac.uk
Telephone: 01865 (2)73608
Rudolf Peierls Centre for Theoretical Physics, room 60.10
My personal webpage
  • About
  • Publications

Large-Volume Flux Compactifications: Moduli Spectrum and D3/D7 Soft Supersymmetry Breaking

(2005)

Authors:

Joseph P Conlon, Fernando Quevedo, Kerim Suruliz
More details from the publisher

Systematics of Moduli Stabilisation in Calabi-Yau Flux Compactifications

ArXiv hep-th/0502058 (2005)

Authors:

Vijay Balasubramanian, Per Berglund, Joseph P Conlon, Fernando Quevedo

Abstract:

We study the large volume limit of the scalar potential in Calabi-Yau flux compactifications of type IIB string theory. Under general circumstances there exists a limit in which the potential approaches zero from below, with an associated non-supersymmetric AdS minimum at exponentially large volume. Both this and its de Sitter uplift are tachyon-free, thereby fixing all Kahler and complex structure moduli, which has been difficult to achieve in the KKLT scenario. Also, for the class of vacua described in this paper, the gravitino mass is independent of the flux discretuum, whereas the ratio of the string scale to the 4d Planck scale is hierarchically small but flux dependent. The inclusion of alpha' corrections plays a crucial role in the structure of the potential. We illustrate these ideas through explicit computations for a particular Calabi-Yau manifold.
Details from ArXiV
More details from the publisher

Systematics of Moduli Stabilisation in Calabi-Yau Flux Compactifications

(2005)

Authors:

Vijay Balasubramanian, Per Berglund, Joseph P Conlon, Fernando Quevedo
More details from the publisher

On the Explicit Construction and Statistics of Calabi-Yau Flux Vacua

ArXiv hep-th/0409215 (2004)

Authors:

Joseph P Conlon, Fernando Quevedo

Abstract:

We explicitly construct and study the statistics of flux vacua for type IIB string theory on an orientifold of the Calabi-Yau hypersurface $P^4_{[1,1,2,2,6]}$, parametrised by two relevant complex structure moduli. We solve for these moduli and the dilaton field in terms of the set of integers defining the 3-form fluxes and examine the distribution of vacua. We compare our numerical results with the predictions of the Ashok-Douglas density $\det (-R - \omega)$, finding good overall agreement in different regions of moduli space. The number of vacua are found to scale with the distance in flux space. Vacua cluster in the region close to the conifold singularity. Large supersymmetry breaking is more generic but supersymmetric and hierarchical supersymmetry breaking vacua can also be obtained. In particular, the small superpotentials and large dilaton VEVs needed to obtain de Sitter space in a controllable approximation are possible but not generic. We argue that in a general flux compactification, the rank of the gauge group coming from D3 branes could be statistically preferred to be very small.
Details from ArXiV
More details from the publisher
More details

On the Explicit Construction and Statistics of Calabi-Yau Flux Vacua

(2004)

Authors:

Joseph P Conlon, Fernando Quevedo
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 28
  • Page 29
  • Page 30
  • Page 31
  • Page 32
  • Page 33
  • Current page 34
  • Page 35
  • Page 36
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet