Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Professor Joseph Conlon

Professor of Theoretical Physics

Research theme

  • Particle astrophysics & cosmology
  • Fundamental particles and interactions
  • Fields, strings, and quantum dynamics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
Joseph.Conlon@physics.ox.ac.uk
Telephone: 01865 (2)73608
Rudolf Peierls Centre for Theoretical Physics, room 60.10
My personal webpage
  • About
  • Publications

Galaxy cluster thermal x-ray spectra constrain axionlike particles

Physical Review D American Physical Society 93:12 (2016) 123526

Authors:

Joseph Conlon, Andrew J Powell, MC David Marsh

Abstract:

Axion-like particles (ALPs) and photons inter-convert in the presence of a magnetic field. At keV energies in the environment of galaxy clusters, the conversion probability can become unsuppressed for light ALPs. Conversion of thermal X-ray photons into ALPs can introduce a step-like feature into the cluster thermal bremsstrahlung spectrum, and we argue that existing X-ray data on galaxy clusters should be sufficient to extend bounds on ALPs in the low-mass region ma . 1 × 10−12 eV down to M ∼ 7 × 1011 GeV, and that for 1011 GeV < M . 1012 GeV light ALPs give rise to interesting and unique observational signatures that may be probed by existing and upcoming Xray (and potentially X-ray polarisation) observations of galaxy clusters.
More details from the publisher
Details from ORA
More details
Details from ArXiV
More details

Constraints on Axion-Like Particles from X-ray Observations of NGC1275

(2016)

Authors:

Marcus Berg, Joseph P Conlon, Francesca Day, Nicholas Jennings, Sven Krippendorf, Andrew J Powell, Markus Rummel
More details from the publisher

Axion decay constants away from the lamppost

Journal of High Energy Physics (2016)

Authors:

Joseph Conlon, Sven Krippendorf

Abstract:

© 2016, The Author(s).Abstract: It is unknown whether a bound on axion field ranges exists within quantum gravity. We study axion field ranges using extended supersymmetry, in particular allowing an analysis within strongly coupled regions of moduli space. We apply this strategy to Calabi-Yau compactifications with one and two Kähler moduli. We relate the maximally allowable decay constant to geometric properties of the underlying Calabi-Yau geometry. In all examples we find a maximal field range close to the reduced Planck mass (with the largest field range being 3.25 MP). On this perspective, field ranges relate to the intersection and instanton numbers of the underlying Calabi-Yau geometry.
More details from the publisher
Details from ORA
More details
Details from ArXiV
More details

Axion decay constants away from the lamppost

(2016)

Authors:

Joseph P Conlon, Sven Krippendorf
More details from the publisher

#EpicFail? Criticisms of String Theory

Chapter in WHY STRING THEORY?, (2016) 213-226
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Current page 9
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet