Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Dr Andrei Constantin

Royal Society Dorothy Hodgkin Fellow

Research theme

  • Fundamental particles and interactions
  • Fields, strings, and quantum dynamics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
andrei.constantin@physics.ox.ac.uk
Telephone: 01865 273995
Rudolf Peierls Centre for Theoretical Physics, room 40.06
  • About
  • Research
  • Teaching
  • Publications

String model building, reinforcement learning and genetic algorithms

(2021)

Authors:

Steven Abel, Andrei Constantin, Thomas Harvey, Andre Lukas
Details from ORA
Details from ArXiV

Flops, Gromov-Witten invariants and symmetries of line bundle cohomology on Calabi-Yau three-folds

Journal of Geometry and Physics Elsevier 171 (2021) 104398

Authors:

Callum R Brodie, Andrei Constantin, Andre Lukas

Abstract:

The zeroth line bundle cohomology on Calabi-Yau three-folds encodes information about the existence of flop transitions and the genus zero Gromov-Witten invariants. We illustrate this claim by studying several Picard number 2 Calabi-Yau three-folds realised as complete intersections in products of projective spaces. Many of these manifolds exhibit certain symmetries on the Picard lattice which preserve the zeroth cohomology.
More details from the publisher
Details from ORA
More details

Swampland conjectures and infinite flop chains

Physical Review D American Physical Society 104:4 (2021) 46008

Authors:

Callum R Brodie, Andrei Constantin, Andre Lukas, Fabian Ruehle

Abstract:

We investigate swampland conjectures for quantum gravity in the context of M-theory compactified on Calabi-Yau threefolds which admit infinite sequences of flops. Naively, the moduli space of such compactifications contains paths of arbitrary geodesic length traversing an arbitrarily large number of Kähler cones, along which the low-energy spectrum remains virtually unchanged. In cases where the infinite chain of Calabi-Yau manifolds involves only a finite number of isomorphism classes, the moduli space has an infinite discrete symmetry which relates the isomorphic manifolds connected by flops. This is a remnant of the eleven-dimensional Poincare symmetry and is consequently gauged, as it has to be, by the no-global symmetry conjecture. The apparent contradiction with the swampland distance conjecture is hence resolved after dividing by this discrete symmetry. If the flop sequence involves infinitely many nonisomorphic manifolds, this resolution is no longer available. However, such a situation cannot occur if the Kawamata-Morrison conjecture for Calabi-Yau threefolds is true. Conversely, the swampland distance conjecture, when applied to infinite flop chains, implies the Kawamata-Morrison conjecture under a plausible assumption on the diameter of the Kähler cones.
More details from the publisher
Details from ORA
More details

Topological formulae for the zeroth cohomology of line bundles on del Pezzo and Hirzebruch surfaces

Complex Manifolds De Gruyter Open 8:1 (2021) 223-229

Authors:

Callum R Brodie, Andrei Constantin, Rehan Deen, Andre Lukas

Abstract:

We show that the zeroth cohomology of effective line bundles on del Pezzo and Hirzebruch surfaces can always be computed in terms of a topological index.
More details from the publisher
Details from ORA
More details

Index formulae for line bundle cohomology on complex surfaces

Fortschritte der Physik / Progress of Physics Wiley 68:2 (2020) 1900086

Authors:

Callum Brodie, Andrei Constantin, Rehan Deen, Andre Lukas

Abstract:

We conjecture and prove closed-form index expressions for the cohomology dimensions of line bundles on del Pezzo and Hirzebruch surfaces. Further, for all compact toric surfaces we provide a simple algorithm which allows expression of any line bundle cohomology in terms of an index. These formulae follow from general theorems we prove for a wider class of surfaces. In particular, we construct a map that takes any effective line bundle to a nef line bundle while preserving the zeroth cohomology dimension. For complex surfaces, these results explain the appearance of piecewise polynomial equations for cohomology and they are a first step towards understanding similar formulae recently obtained for Calabi-Yau three-folds.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet