Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Dr Andrei Constantin

Royal Society Dorothy Hodgkin Fellow

Research theme

  • Fundamental particles and interactions
  • Fields, strings, and quantum dynamics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
andrei.constantin@physics.ox.ac.uk
Telephone: 01865 273995
Rudolf Peierls Centre for Theoretical Physics, room 40.06
  • About
  • Research
  • Teaching
  • Publications

Machine learning line bundle cohomology

Fortschritte der Physik Wiley 68:1 (2019) 1900087

Authors:

Callum R Brodie, Andrei Constantin, Rehan Deen, Andre Lukas

Abstract:

We investigate different approaches to machine learning of line bundle cohomology on complex surfaces as well as on Calabi-Yau three-folds. Standard function learning based on simple fully connected networks with logistic sigmoids is reviewed and its main features and shortcomings are discussed. It has been observed recently that line bundle cohomology can be described by dividing the Picard lattice into certain regions in each of which the cohomology dimension is described by a polynomial formula. Based on this structure, we set up a network capable of identifying the regions and their associated polynomials, thereby effectively generating a conjecture for the correct cohomology formula. For complex surfaces, we also set up a network which learns certain rigid divisors which appear in a recently discovered master formula for cohomology dimensions.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Formulae for line bundle cohomology on Calabi‐Yau threefolds

Fortschritte der Physik / Progress of Physics Wiley 67:12 (2019) 1900084

Authors:

Andrei Constantin, Andre Lukas

Abstract:

We present closed form expressions for the ranks of all cohomology groups of holomorphic line bundles on several Calabi‐Yau threefolds realised as complete intersections in products of projective spaces. The formulae have been obtained by systematising and extrapolating concrete calculations and they have been checked computationally. Although the intermediate calculations often involve laborious computations of ranks of Leray maps in the Koszul spectral sequence, the final results for cohomology follow a simple pattern. The space of line bundles can be divided into several different regions, and in each such region the ranks of all cohomology groups can be expressed as polynomials in the line bundle integers of degree at most three. The number of regions increases and case distinctions become more complicated for manifolds with a larger Picard number. We also find explicit cohomology formulae for several non‐simply connected Calabi‐Yau threefolds realised as quotients by freely acting discrete symmetries. More cases may be systematically handled by machine learning algorithms.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Counting string theory standard models

Physics Letters B Elsevier 792 (2019) 258-262

Authors:

A Constantin, Y-H He, Andre Lukas

Abstract:

We derive an approximate analytic relation between the number of consistent heterotic Calabi-Yau compactifications of string theory with the exact charged matter content of the standard model of particle physics and the topological data of the internal manifold: the former scaling exponentially with the number of Kähler parameters. This is done by an estimate of the number of solutions to a set of Diophantine equations representing constraints satisfied by any consistent heterotic string vacuum with three chiral massless families, and has been computationally checked to hold for complete intersection Calabi-Yau threefolds (CICYs) with up to seven Kähler parameters. When extrapolated to the entire CICY list, the relation gives ∼10 23 string theory standard models; for the class of Calabi-Yau hypersurfaces in toric varieties, it gives ∼10 723 standard models.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Matter field Kahler metric in heterotic string theory from localisation

Journal of High Energy Physics Springer Verlag 2018:4 (2018) 139

Authors:

Ştefan Blesneag, EI Buchbinder, A Constantin, Andre Lukas, E Palti

Abstract:

We propose an analytic method to calculate the matter field Kähler metric in heterotic compactifications on smooth Calabi-Yau three-folds with Abelian internal gauge fields. The matter field Kähler metric determines the normalisations of the N = 1 chiral superfields, which enter the computation of the physical Yukawa couplings. We first derive the general formula for this Kähler metric by a dimensional reduction of the relevant supergravity theory and find that its T-moduli dependence can be determined in general. It turns out that, due to large internal gauge flux, the remaining integrals localise around certain points on the compactification manifold and can, hence, be calculated approximately without precise knowledge of the Ricci-flat Calabi-Yau metric. In a final step, we show how this local result can be expressed in terms of the global moduli of the Calabi-Yau manifold. The method is illustrated for the family of Calabi-Yau hypersurfaces embedded in ℙ1× ℙ3and we obtain an explicit result for the matter field Kähler metric in this case.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Hodge numbers for all CICY quotients

Journal of High Energy Physics Springer 2017 (2017)

Authors:

Andrei Constantin, James Gray, Andre Lukas

Abstract:

We present a general method for computing Hodge numbers for Calabi-Yau manifolds realised as discrete quotients of complete intersections in products of projective spaces. The method relies on the computation of equivariant cohomologies and is illustrated for several explicit examples. In this way, we compute the Hodge numbers for all discrete quotients obtained in Braun’s classification.
More details from the publisher
Details from ORA
More details
Details from ArXiV
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet