Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Part of a WEAVE fibre configuration

Part of the WEAVE focal plane showing optical fibres positioned on a set of targets in the telescope focal plane.

Prof Gavin Dalton

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Astronomical instrumentation
  • Extremely Large Telescope
Gavin.Dalton@physics.ox.ac.uk
  • About
  • Research
  • Publications

The current status of the UK-FMOS spectrograph

Society of Photo-Optical Instrumentation Engineers (SPIE) 5492 (2004) 1362-1370

Authors:

IA Tosh, GF Woodhouse, T Froud, A Dowell, M Patel, M Wallner, IJ Lewis, GB Dalton, A Holmes, B Brooks, C Band, DG Bonfield, GJ Murray, DJ Robertson, NA Dipper

The 2dF Galaxy Redshift Survey: the local E+A galaxy population

(2004)

Authors:

Chris Blake, Michael Pracy, Warrick Couch, Kenji Bekki, Ian Lewis, Karl Glazebrook, Ivan Baldry, Carlton Baugh, Joss Bland-Hawthorn, Terry Bridges, Russell Cannon, Shaun Cole, Matthew Colless, Chris Collins, Gavin Dalton, Roberto De Propris, Simon Driver, George Efstathiou, Richard Ellis, Carlos Frenk, Carole Jackson, Ofer Lahav, Stuart Lumsden, Steve Maddox, Darren Madgwick, Peder Norberg, John Peacock, Bruce Peterson, Will Sutherland, Keith Taylor
More details from the publisher

Multi-Object Near-IR H-alpha Spectroscopy of z~1 star-forming galaxies in the HDF-N

(2004)

Authors:

Michelle Doherty, Andrew Bunker, Robert Sharp, Gavin Dalton, Ian Parry, Ian Lewis, Emily MacDonald, Christian Wolf, Hans Hippelein
More details from the publisher

The 2dF Galaxy Redshift Survey: Higher-order galaxy correlation functions

Monthly Notices of the Royal Astronomical Society 352:4 (2004) 1232-1244

Authors:

DJ Croton, E Gaztañaga, CM Baugh, P Norberg, M Colless, LK Baldry, J Bland-Hawthorn, T Bridges, R Cannon, S Cole, C Collins, W Couch, G Dalton, R De Propris, SP Driver, G Efstathiou, RS Ellis, CS Frenk, K Glazebrook, C Jackson, O Lahav, I Lewis, S Lumsden, S Maddox, D Madgwick, JA Peacock, BA Peterson, W Sutherland, K Taylor

Abstract:

We measure moments of the galaxy count probability distribution function in the Two-degree Field Galaxy Redshift Survey (2dFGRS). The survey is divided into volume-limited subsamples in order to examine the dependence of the higher-order clustering on galaxy luminosity. We demonstrate the hierarchical scaling of the averaged p-point galaxy correlation functions, ξ̄p, up to p = 6. The hierarchical amplitudes, Sp = S2Sp-1, are approximately independent of the cell radius used to smooth the galaxy distribution on small to medium scales. On larger scales we find that the higher-order moments can be strongly affected by the presence of rare, massive superstructures in the galaxy distribution. The skewness S3 has a weak dependence on luminosity, approximated by a linear dependence on log luminosity. We discuss the implications of our results for simple models of linear and non-linear bias that relate the galaxy distribution to the underlying mass.
More details from the publisher

The 2dF galaxy redshift survey: Voids and hierarchical scaling models

Monthly Notices of the Royal Astronomical Society 352:3 (2004) 828-836

Authors:

DJ Croton, M Colless, E Gaztañaga, CM Baugh, P Norberg, IK Baldry, J Bland-Hawthorn, T Bridges, R Cannon, S Cole, C Collins, W Couch, G Dalton, R De Propris, SP Driver, G Efstathiou, RS Ellis, CS Frenk, K Glazebrook, C Jackson, O Lahav, I Lewis, S Lumsden, S Maddox, D Madgwick, JA Peacock, BA Peterson, W Sutherland, K Taylor

Abstract:

We measure the redshift-space reduced void probability function (VPF) for 2dFGRS volume-limited galaxy samples covering the absolute magnitude range MbJ -5log10 h = -18 to -22. Theoretically, the VPF connects the distribution of voids to the moments of galaxy clustering of all orders, and can be used to discriminate clustering models in the weakly nonlinear regime. The reduced VPF measured from the 2dFGRS is in excellent agreement with the paradigm of hierarchical scaling of the galaxy clustering moments. The accuracy of our measurement is such that we can rule out, at a very high significance, popular models for galaxy clustering, including the lognormal distribution. We demonstrate that the negative binomial model gives a very good approximation to the 2dFGRS data over a wide range of scales, out to at least 20 h-1 Mpc. Conversely, the reduced VPF for dark matter in a A cold dark matter ( ACDM) universe does appear to be lognormal on small scales but deviates significantly beyond ∼4 h-1 Mpc. We find little dependence of the 2dFGRS reduced VPF on galaxy luminosity. Our results hold independently in both the North and South Galactic Pole survey regions.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 54
  • Page 55
  • Page 56
  • Page 57
  • Current page 58
  • Page 59
  • Page 60
  • Page 61
  • Page 62
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet