Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Part of a WEAVE fibre configuration

Part of the WEAVE focal plane showing optical fibres positioned on a set of targets in the telescope focal plane.

Prof Gavin Dalton

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Astronomical instrumentation
  • Extremely Large Telescope
Gavin.Dalton@physics.ox.ac.uk
  • About
  • Research
  • Publications

The 2dF galaxy redshift survey: Wiener reconstruction of the cosmic web

Monthly Notices of the Royal Astronomical Society 352:3 (2004) 939-960

Authors:

P Erdoǧdu, O Lahav, S Zaroubi, G Efstathiou, S Moody, JA Peacock, M Colless, IK Baldry, CM Baugh, J Bland-Hawthorn, T Bridges, R Cannon, S Cole, C Collins, W Couch, G Dalton, R De Propris, SP Driver, RS Ellis, CS Frenk, K Glazebrook, C Jackson, I Lewis, S Lumsden, S Maddox, D Madgwick, P Norberg, BA Peterson, W Sutherland, K Taylor

Abstract:

We reconstruct the underlying density field of the Two-degree Field Galaxy Redshift Survey (2dFGRS) for the redshift range 0.035 < z < 0.200 using the Wiener filtering method. The Wiener filter suppresses shot noise and accounts for selection and incompleteness effects. The method relies on prior knowledge of the 2dF power spectrum of fluctuations and the combination of matter density and bias parameters, however the results are only slightly affected by changes to these parameters. We present maps of the density field. We use a variable smoothing technique with two different effective resolutions: 5 and 10 h-1 Mpc at the median redshift of the survey. We identify all major superclusters and voids in the survey. In particular, we find two large superclusters and two large local voids. The full set of colour maps can be viewed on the World Wide Web at http://www.ast.cam.ac.uk/~pirin.
More details from the publisher

Substructure analysis of selected low-richness 2dFGRS clusters of galaxies

Monthly Notices of the Royal Astronomical Society 352:2 (2004) 605-654

Authors:

WS Burgett, MM Vick, DS Davis, M Colless, R De Propris, I Baldry, C Baugh, J Bland-Hawthorn, T Bridges, R Cannon, S Cole, C Collins, W Couch, N Cross, G Dalton, S Driver, G Efstathiou, R Ellis, CS Frenk, K Glazebrook, E Hawkins, C Jackson, O Lahav, I Lewis, S Lumsden, S Maddox, D Madgwick, P Norberg, JA Peacock, W Percival, B Peterson, W Sutherland, K Taylor

Abstract:

Complementary one-, two- and three-dimensional tests for detecting the presence of substructure in clusters of galaxies are applied to recently obtained data from the 2dF Galaxy Redshift Survey. The sample of 25 clusters used in this study includes 16 clusters not previously investigated for substructure. Substructure is detected at or greater than the 99 per cent confidence level in at least one test for 21 of the 25 clusters studied here. From the results, it appears that low-richness clusters commonly contain subclusters participating in mergers. About half of the clusters have two or more components within 0.5 h-1 Mpc of the cluster centroid, and at least three clusters (Abell 1139, Abell 1663 and Abell S333) exhibit velocity-position characteristics consistent with the presence of possible cluster rotation, shear, or infall dynamics. The geometry of certain features is consistent with influence by the host supercluster environments. In general, our results support the hypothesis that low-richness clusters relax to structureless equilibrium states on very long dynamical time-scales (if at all).
More details from the publisher
More details

The 2dF galaxy redshift survey: The clustering of galaxy groups

Monthly Notices of the Royal Astronomical Society 352:1 (2004) 211-225

Authors:

ND Padilla, CM Baugh, VR Eke, P Norberg, S Cole, CS Frenk, DJ Croton, IK Baldry, J Bland-Hawthorn, T Bridges, R Cannon, M Colless, C Collins, W Couch, G Dalton, R De Propris, SP Driver, G Efstathiou, RS Ellis, K Glazebrook, C Jackson, O Lahav, I Lewis, S Lumsden, S Maddox, D Madgwick, JA Peacock, BA Peterson, W Sutherland, K Taylor

Abstract:

We measure the clustering of galaxy groups in the 2dFGRS Percolation-Inferred Galaxy Group (2PIGG) catalogue. The 2PIGG sample has 28 877 groups with at least two members. The clustering amplitude of the full 2PIGG catalogue is weaker than that of 2dFGRS galaxies, in agreement with theoretical predictions. We have subdivided the 2PIGG catalogue into samples that span a factor of ≈ 25 in median total luminosity. Our correlation function measurements span an unprecedented range of clustering strengths, connecting the regimes probed by groups fainter than galaxies and rich clusters. There is a steady increase in clustering strength with group luminosity; the most luminous groups are 10 times more strongly clustered than the full 2PIGG catalogue. We demonstrate that the 2PIGG results are in very good agreement with the clustering of groups expected in the ACDM model.
More details from the publisher

The 2dF Galaxy Redshift Survey: Spherical Harmonics analysis of fluctuations in the final catalogue

(2004)

Authors:

Will J Percival, Daniel Burkey, Alan Heavens, Andy Taylor, Shaun Cole, John A Peacock, Carlton M Baugh, Joss Bland-Hawthorn, Terry Bridges, Russell Cannon, Matthew Colless, Chris Collins, Warrick Couch, Gavin Dalton, Roberto De Propris, Simon P Driver, George Efstathiou, Richard S Ellis, Carlos S Frenk, Karl Glazebrook, Carole Jackson, Ofer Lahav, Ian Lewis, Stuart Lumsden, Steve Maddox, Peder Norberg, Bruce A Peterson, Will Sutherland, Keith Taylor
More details from the publisher

The 2dF galaxy redshift survey: Hierarchical galaxy clustering

Monthly Notices of the Royal Astronomical Society 351:2 (2004)

Authors:

CM Baugh, DJ Croton, E Gaztañaga, P Norberg, M Colless, IK Baldry, J Bland-Hawthorn, T Bridges, R Cannon, S Cole, C Collins, W Couch, G Dalton, R De Propris, SP Driver, G Efstathiou, RS Ellis, CS Frenk, K Glazebrook, C Jackson, O Lahav, I Lewis, S Lumsden, S Maddox, D Madgwick, JA Peacock, BA Peterson, W Sutherland, K Taylor

Abstract:

We use the Two-Degree Field Galaxy Redshift Survey (2dFGRS) to test the hierarchical scaling hypothesis: namely, that the p-point galaxy correlation functions can be written in terms of the two-point correlation function or variance. This scaling is expected if an initially Gaussian distribution of density fluctuations evolves under the action of gravitational instability. We measure the volume-averaged p-point correlation functions using a counts-in-cells technique applied to a volume-limited sample of 44 931 L* galaxies. We demonstrate that L* galaxies display hierarchical clustering up to order p = 6 in redshift space. The variance measured for L* galaxies is in excellent agreement with the predictions from a Λ-cold dark matter N-body simulation. This applies to all cell radii considered, 0.3 < (R/h-1 Mpc) < 30. However, the higher order correlation functions of L* galaxies have a significantly smaller amplitude than is predicted for the dark matter for R < 10 h-1 Mpc. This disagreement implies that a non-linear bias exists between the dark matter and L* galaxies on these scales. We also show that the presence of two rare, massive superclusters in the 2dFGRS has an impact on the higher-order clustering moments measured on large scales.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 55
  • Page 56
  • Page 57
  • Page 58
  • Current page 59
  • Page 60
  • Page 61
  • Page 62
  • Page 63
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet