Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Professor Roger Davies

Emeritus Wetton Professor

Research theme

  • Astronomy and astrophysics
  • Instrumentation

Sub department

  • Astrophysics

Research groups

  • Astronomical instrumentation
  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • Rubin-LSST
  • Extremely Large Telescope
Roger.Davies@physics.ox.ac.uk
  • About
  • Publications

Formation channels of slowly rotating early-type galaxies

Astronomy and Astrophysics EDP Sciences 635 (2020) A129

Authors:

Davor Krajnovic, Ugur Ural, Harald Kuntschner, Paul Goudfrooij, Michael Wolfe, Michele Cappellari, Roger Davies, Tim P de Zeeuw, Pierre-Alain Duc, Eric Emsellem, Arna Karick, Richard M McDermid, Simona Mei, Thorsten Naab

Abstract:

We study the evidence for a diversity of formation processes in early-type galaxies by presenting the first complete volume-limited sample of slow rotators with both integral-field kinematics from the ATLAS3D Project and high spatial resolution photometry from the Hubble Space Telescope. Analysing the nuclear surface brightness profiles of 12 newly imaged slow rotators, we classify their light profiles as core-less, and place an upper limit to the core size of about 10 pc. Considering the full magnitude and volume-limited ATLAS3D sample, we correlate the presence or lack of cores with stellar kinematics, including the proxy for the stellar angular momentum (λRe) and the velocity dispersion within one half-light radius (σe), stellar mass, stellar age, α-element abundance, and age and metallicity gradients. More than half of the slow rotators have core-less light profiles, and they are all less massive than 1011 M⊙. Core-less slow rotators show evidence for counter-rotating flattened structures, have steeper metallicity gradients, and a larger dispersion of gradient values (Δ[Z/H]¯ = −0.42 ± 0.18) than core slow rotators (Δ[Z/H]¯ = −0.23 ± 0.07). Our results suggest that core and core-less slow rotators have different assembly processes, where the former, as previously discussed, are the relics of massive dissipation-less merging in the presence of central supermassive black holes. Formation processes of core-less slow rotators are consistent with accretion of counter-rotating gas or gas-rich mergers of special orbital configurations, which lower the final net angular momentum of stars, but support star formation. We also highlight core fast rotators as galaxies that share properties of core slow rotators (i.e. cores, ages, σe, and population gradients) and core-less slow rotators (i.e. kinematics, λRe, mass, and larger spread in population gradients). Formation processes similar to those for core-less slow rotators can be invoked to explain the assembly of core fast rotators, with the distinction that these processes form or preserve cores.
More details from the publisher
Details from ORA
More details

Unravelling the origin of the counter-rotating core in IC 1459 with KMOS and MUSE

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 488:2 (2019) 1679-1694

Authors:

Laura J Prichard, Sam P Vaughan, Roger L Davies
More details from the publisher
More details

Galaxy formation and evolution science in the era of the Large Synoptic Survey Telescope

Nature Reviews Physics Springer Nature 1:7 (2019) 450-462

Authors:

Brant E Robertson, Manda Banerji, Sarah Brough, Roger L Davies, Henry C Ferguson, Ryan Hausen, Sugata Kaviraj, Jeffrey A Newman, Samuel J Schmidt, J Anthony Tyson, Risa H Wechsler
More details from the publisher
More details

The fifteenth data release of the Sloan Digital Sky Surveys: First release of MaNGA-derived quantities, data visualization tools, and Stellar Library

Astrophysical Journal Supplement Institute of Physics 240:23 (2019)

Authors:

DS Aguado, R Ahumada, A Almeida, Michele Cappellari, R Davies, Chris Lintott

Abstract:

Twenty years have passed since first light for the Sloan Digital Sky Survey (SDSS). Here, we release data taken by the fourth phase of SDSS (SDSS-IV) across its first three years of operation (2014 July–2017 July). This is the third data release for SDSS-IV, and the 15th from SDSS (Data Release Fifteen; DR15). New data come from MaNGA—we release 4824 data cubes, as well as the first stellar spectra in the MaNGA Stellar Library (MaStar), the first set of survey-supported analysis products (e.g., stellar and gas kinematics, emission-line and other maps) from the MaNGA Data Analysis Pipeline, and a new data visualization and access tool we call "Marvin." The next data release, DR16, will include new data from both APOGEE-2 and eBOSS; those surveys release no new data here, but we document updates and corrections to their data processing pipelines. The release is cumulative; it also includes the most recent reductions and calibrations of all data taken by SDSS since first light. In this paper, we describe the location and format of the data and tools and cite technical references describing how it was obtained and processed. The SDSS website (www.sdss.org) has also been updated, providing links to data downloads, tutorials, and examples of data use. Although SDSS-IV will continue to collect astronomical data until 2020, and will be followed by SDSS-V (2020–2025), we end this paper by describing plans to ensure the sustainability of the SDSS data archive for many years beyond the collection of data.
More details from the publisher
Details from ORA
More details
Details from ArXiV

The stellar population and initial mass function of NGC 1399 with MUSE

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 479:2 (2018) 2443-2456

Authors:

Sam P Vaughan, Roger L Davies, Simon Zieleniewski, Ryan CW Houghton
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Current page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet