Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Professor Roger Davies

Emeritus Wetton Professor

Research theme

  • Astronomy and astrophysics
  • Instrumentation

Sub department

  • Astrophysics

Research groups

  • Astronomical instrumentation
  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • Rubin-LSST
  • Extremely Large Telescope
Roger.Davies@physics.ox.ac.uk
  • About
  • Publications

The KMOS Cluster Survey (KCS). III. Fundamental plane of cluster galaxies at z ≃ 1.80 in JKCS 041

Astrophysical Journal Institute of Physics 850:2 (2017) 203

Authors:

Laura J Prichard, Roger L Davies, A Beifiori, JCC Chan, Michele Cappellari, Ryan CW Houghton, JT Mendel, R Bender, A Galametz, RP Saglia, JP Stott, DJ Wilman, Ian J Lewis, R Sharples, M Wegner

Abstract:

We present data for 16 galaxies in the overdensity JKCS 041 at z ≃ 1.80 as part of the K-band Multi-Object Spectrograph (KMOS) Cluster Survey (KCS). With 20 hr integrations, we have obtained deep absorption-line spectra from which we derived velocity dispersions for seven quiescent galaxies. We combined photometric parameters derived from Hubble Space Telescope images with the dispersions to construct a fundamental plane (FP) for quiescent galaxies in JKCS 041. From the zero-point evolution of the FP, we derived a formation redshift for the galaxies of z form = 3.0 ± 0.3, corresponding to a mean age of 1.4 ± 0.2 Gyr. We tested the effect of structural and velocity dispersion evolution on our FP zero-point and found a negligible contribution when using dynamical mass-normalized parameters (∼3%) but a significant contribution from stellar-mass-normalized parameters (∼42%). From the relative velocities of the galaxies, we probed the 3D structure of these 16 confirmed members of JKCS 041 and found that a group of galaxies in the southwest of the overdensity had systematically higher velocities. We derived ages for the galaxies in the different groups from the FP. We found that the eastextending group had typically older galaxies (2.1 +0.3 0.2 Gyr) than those in the southwest group (0.3 ± 0.2 Gyr). Although based on small numbers, the overdensity dynamics, morphology, and age results could indicate that JKCS 041 is in formation and may comprise two merging groups of galaxies. This result could link large-scale structure to ages of galaxies for the first time at this redshift.
More details from the publisher
Details from ORA
More details

Self-consistent Bulge/Disk/Halo Galaxy Dynamical Modeling Using Integral Field Kinematics

ASTROPHYSICAL JOURNAL 850:1 (2017) ARTN 70

Authors:

DS Taranu, D Obreschkow, JJ Dubinski, LMR Fogarty, J van de Sande, B Catinella, L Cortese, A Moffett, ASG Robotham, JT Allen, J Bland-Hawthorn, JJ Bryant, M Colless, SM Croom, F D'Eugenio, RL Davies, MJ Drinkwater, SP Driver, M Goodwin, IS Konstantopoulos, JS Lawrence, AR Lopez-Sanchez, NPF Lorente, AM Medling, JR Mould, MS Owers, C Power, SN Richards, C Tonini
More details from the publisher
Details from ORA
More details

The KMOS Cluster Survey (KCS). I. The fundamental plane and the formation ages of cluster galaxies at redshift 1.4 < Z < 1.6

Astrophysical Journal American Astronomical Society 846:2 (2017) 1-25

Authors:

A Beifiori, JT Mendel, JCC Chan, RP Saglia, R Bender, Michele Cappellari, Roger L Davies, A Galametz, Ryan CW Houghton, Laura J Prichard, R Smith, John P Stott, DJ Wilman, Ian J Lewis, R Sharples, M Wegner

Abstract:

The American Astronomical Society. All rights reserved. We present the analysis of the fundamental plane (FP) for a sample of 19 massive red-sequence galaxies (M· > ×4 10 10 M·) in three known overdensities at 1.39 1.61 < < z from the K-band Multi-object Spectrograph (KMOS) Cluster Survey, a guaranteed-time program with spectroscopy from the KMOS at the VLT and imaging from the Hubble Space Telescope. As expected, we find that the FP zero-point in B band evolves with redshift, from the value 0.443 of Coma to -0.10±0.09, -0.19±0.05, and -0.29±0.12 for our clusters at z = 1.39, z = 1.46, and z = 1.61, respectively. For the most massive galaxies (log 1 M M· > 1) in our sample, we translate the FP zero-point evolution into a mass-to-light-ratio M/L evolution, finding D log 0.46 0.10 M L z B = - (D log )0.52 0.07 M L z B = -to(D log ) 0.55 0.10 M L z B = - respectively. We assess the potential contribution of the galaxy structural and stellar velocity dispersion evolution to the evolution of the FP zero-point and find it to be ∼6%-35% of the FP zero-point evolution. The rate of M/L evolution is consistent with galaxies evolving passively. Using single stellar population models, we find an average age of 2.33- +0.51 0.86 Gyr for the log 1 M M· > 1 galaxies in our massive and virialized cluster at z = 1.39,1.59- +0.62 1.40 Gyr in a massive but not virialized cluster at z = 1.46, and 1.20- +0.47 1.03 Gyr in a protocluster at z = 1.61. After accounting for the difference in the age of the universe between redshifts, the ages of the galaxies in the three overdensities are consistent within the errors, with possibly a weak suggestion that galaxies in the most evolved structure are older.
More details from the publisher
Details from ORA
More details
More details

Large sSynoptic Survey Telescope Galaxies Science Roadmap

(2017)

Authors:

BE Robertson, M Banerji, MC Cooper, Roger Davies, SP Driver, Ferguson, HC Ferguson, E Gawiser, S Kaviraj, JH Knapen, Chris Lintott, J Lotz, JA Newman, DJ Norman, N Padilla, SJ Schmidt, GP Smith, JA Tyson, Aprajita Verma, I Zehavi, L Armus, C Avestruz, LF Barrientos, Rebecca AA Bowler, MN Bremer, CJ Conselice, J Davies, R Demarco, ME Dickinson, G Galaz, A Grazian, BW Holwerda, Matthew Jarvis, V Kasliwal, I Lacerna, J Loveday, P Marshall, E Merlin, NR Napolitano, TH Puzia, A Robotham, S Salim, M Sereno, GF Snyder, JP Stott, PB Tissera, N Werner, P Yoachim, KD Borne

Abstract:

The Large Synoptic Survey Telescope (LSST) will enable revolutionary studies of galaxies, dark matter, and black holes over cosmic time. The LSST Galaxies Science Collaboration has identified a host of preparatory research tasks required to leverage fully the LSST dataset for extragalactic science beyond the study of dark energy. This Galaxies Science Roadmap provides a brief introduction to critical extragalactic science to be conducted ahead of LSST operations, and a detailed list of preparatory science tasks including the motivation, activities, and deliverables associated with each. The Galaxies Science Roadmap will serve as a guiding document for researchers interested in conducting extragalactic science in anticipation of the forthcoming LSST era.
More details from the publisher
Details from ORA
Details from ArXiV

The SAMI Galaxy Survey: Mass as the Driver of the Kinematic Morphology-Density Relation in Clusters

ASTROPHYSICAL JOURNAL 844:1 (2017) ARTN 59

Authors:

S Brough, J van de Sande, MS Owers, F d'Eugenio, R Sharp, L Cortese, N Scott, SM Croom, R Bassett, K Bekki, J Bland-Hawthorn, JJ Bryant, R Davies, MJ Drinkwater, SP Driver, C Foster, G Goldstein, AR Lopez-Sanchez, AM Medling, SM Sweet, DS Taranu, C Tonini, SK Yi, M Goodwin, JS Lawrence, SN Richards
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Current page 8
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet