THE SAMI GALAXY SURVEY: REVISITING GALAXY CLASSIFICATION THROUGH HIGH-ORDER STELLAR KINEMATICS
ASTROPHYSICAL JOURNAL 835:1 (2017) ARTN 104
ERIS, first generation becoming second generation, or re-vitalizing an AO instrument
Adaptive Optics for Extremely Large Telescopes, 2017 AO4ELT5 2017-June (2017)
Abstract:
Within the VLT instrumentation program, the second generation instrument ERIS (Enhanced Resolution Imager and Spectrograph) combines two key scientifically successful elements of the VLT first generation instrumentation program: It consists of a full renovation of the integral field spectrograph SPIFFI and a new near-IR camera NIX, implementing the most scientifically important imaging modes offered so far by NACO (imaging in the J to M bands, astrometry, Sparse Aperture Masking and Apodizing Phase Plate (APP) coronagraphy). Both diffraction limited sub-systems of ERIS make use of the latest AO technologies with the newly installed AOF (AO Facility) Deformable Secondary Mirror with 1170 actuators and a new laser guide star system. We will describe the changes that will be implemented, give a summary of what SINFONI is currently achieving, and present what to expect from the performance upgrade. With instruments becoming more complex and therefore increasing development times, we describe the challenges to improve image quality, spectral and spatial resolution on the same focus of a VLT UT, which could become valuable lessons for the extension of the life of actual instruments and of future ones. We will address the impact of the aging of the instrument and what critical parts to consider in the design in view of future upgrades, to possibly extend the performances, capabilities and lifetime at lower development costs.Radial gradients in initial mass function sensitive absorption features in the Coma brightest cluster galaxies
Monthly Notices of the Royal Astronomical Society Oxford University Press 465:1 (2016) 192-212
Abstract:
Using the Oxford ShortWavelength Integral Field specTrograph, we trace radial variations of initial mass function (IMF)-sensitive absorption features of three galaxies in the Coma cluster. We obtain resolved spectroscopy of the central 5 kpc for the two central brightest cluster galaxies (BCGs) NGC4889, NGC4874, and the BCG in the south-west group NGC4839, as well as unresolved data for NGC4873 as a low-σ* control.We present radial measurements of the IMF-sensitive features: sodium Na I SDSS , calcium triplet CaT, and iron-hydride FeH0.99, along with the magnesium Mg I0.88 and titanium oxide TiO0.89 features. We employ two separate methods for both telluric correction and sky subtraction around the faint FeH feature to verify our analysis. Within NGC4889 we find strong gradients of Na I SDSS and CaT but a flat FeH profile, which, from comparing to stellar population synthesis models, suggests an old, α-enhanced population with a Chabrier, or even bottom-light IMF. The age and abundance are in line with previous studies but the normal IMF is in contrast to recent results suggesting an increased IMF slope with increased velocity dispersion.We measure flat Na I SDSS and FeH profiles within NGC4874, and determine an old, possibly slightly α-enhanced and Chabrier IMF population. We find an α-enhanced, Chabrier IMF population in NGC4873. Within NGC4839 we measure both strong Na I SDSS and strong FeH, although with a large systematic uncertainty, suggesting a possible heavier IMF. The IMFswe infer for these galaxies are supported by published dynamical modelling. We stress that IMF constraints should be corroborated by further spectral coverage and independent methods on a galaxy-by-galaxy basis.Making SPIFFI SPIFFIER: upgrade of the SPIFFI instrument for use in ERIS and performance analysis from re-commissioning
Proceedings of SPIE--the International Society for Optical Engineering SPIE, the international society for optics and photonics 9908 (2016) 99080g-99080g-20
Sizes, colour gradients and resolved stellar mass distributions for the massive cluster galaxies in XMMUJ2235-2557 at z = 1.39
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 458:3 (2016) 3181-3209