A statistical investigation of the mass discrepancy–acceleration relation
Monthly Notices of the Royal Astronomical Society Oxford University Press 464:4 (2016) 4160-4175
Abstract:
We use the mass discrepancy–acceleration relation (the correlation between the ratio of total-to-visible mass and acceleration in galaxies; MDAR) to test the galaxy–halo connection. We analyse the MDAR using a set of 16 statistics that quantify its four most important features: shape, scatter, the presence of a ‘characteristic acceleration scale’, and the correlation of its residuals with other galaxy properties. We construct an empirical framework for the galaxy– halo connection inLCDMto generate predictions for these statistics, starting with conventional correlations (halo abundance matching;AM)and introducing more where required. Comparing to the SPARC data, we find that: (1) the approximate shape of the MDAR is readily reproduced by AM, and there is no evidence that the acceleration at which dark matter becomes negligible has less spread in the data than in AM mocks; (2) even under conservative assumptions, AM significantly overpredicts the scatter in the relation and its normalization at low acceleration, and furthermore positions dark matter too close to galaxies’ centres on average; (3) the MDAR affords 2σ evidence for an anticorrelation of galaxy size and Hubble type with halo mass or concentration at fixed stellar mass. Our analysis lays the groundwork for a bottom-up determination of the galaxy–halo connection from relations such as the MDAR, provides concrete statistical tests for specific galaxy formationmodels, and brings into sharper focus the relative evidence accorded by galaxy kinematics to LCDM and modified gravity alternatives.The Tully–Fisher and mass–size relations from halo abundance matching
Monthly Notices of the Royal Astronomical Society Oxford University Press 454:1 (2015) 322-343
Abstract:
The Tully–Fisher relation (TFR) expresses the connection between rotating galaxies and the dark matter haloes they inhabit, and therefore contains a wealth of information about galaxy formation. We construct a general framework to investigate whether models based on halo abundance matching are able to reproduce the observed stellar mass TFR and mass–size relation (MSR), and use the data to constrain galaxy formation parameters. Our model tests a range of plausible scenarios, differing in the response of haloes to disc formation, the relative angular momentum of baryons and dark matter, the impact of selection effects, and the abundance matching parameters. We show that agreement with the observed TFR puts an upper limit on the scatter between galaxy and halo properties, requires weak or reversed halo contraction, and favours selection effects that preferentially eliminate fast-rotating galaxies. The MSR constrains the ratio of the disc to halo specific angular momentum to be approximately in the range 0.6–1.2. We identify and quantify two problems that models of this nature face. (1) They predict too large an intrinsic scatter for the MSR, and (2) they predict too strong an anticorrelation between the TFR and MSR residuals. We argue that resolving these problems requires introducing a correlation between stellar surface density and enclosed dark matter mass. Finally, we explore the expected difference between the TFRs of central and satellite galaxies, finding that in the favoured models this difference should be detectable in a sample of ∼700 galaxies.The baryonic Tully-Fisher Relation predicted by cold dark matter cosmogony
ArXiv 1204.1497 (2012)
Abstract:
Providing a theoretical basis for the baryonic Tully-Fisher Relation (BTFR; baryonic mass vs rotational velocity in spiral galaxies) in the LCDM paradigm has proved problematic. Simple calculations suggest too low a slope and too high a scatter, and recent semi-analytic models and numerical galaxy simulations typically fail to reproduce some aspects of the relation. Furthermore, the assumptions underlying one model are often inconsistent with those behind another. This paper aims to develop a rigorous prediction for the BTFR in the context of LCDM, using only a priori expected effects and relations, a minimum of theoretical assumptions, and no free parameters. The robustness of the relation to changes in key galactic parameters will be explored. I adopt a modular approach, taking each of the stand alone galaxy relations necessary for constructing the BTFR from up-to-date numerical simulations of dark halos. These relations -- and their expected scatter -- are used to describe model spirals with a range of masses, resulting in a band in the space of the BTFR that represents the current best guess for the LCDM prediction. Consistent treatment of expected LCDM effects goes a large way towards reconciling the naive slope-3 LCDM prediction with the data, especially in the range 10^9 M_sun < M_bar < 10^11 M_sun. The theoretical BTFR becomes significantly curved at M_bar > 10^11 M_sun, but this is difficult to test observationally due to the scarcity of extremely high mass spirals. Low mass gas-rich galaxies have systematically lower rotational velocity than the LCDM prediction, although the relation used to describe baryon mass fractions must be extrapolated in this regime. The fact that the BTFR slope derived here is significantly greater than in early predictions is a direct consequence of a corresponding increase in the expected sensitivity of baryon mass fraction to total halo mass.Calibrating galaxy formation effects in galactic tests of fundamental physics
Abstract:
Galactic scale tests have proven to be powerful tools in constraining fundamental physics in previously under-explored regions of parameter space. The astrophysical regime which they probe is inherently complicated, and the inference methods used to make these constraints should be robust to baryonic effects. Previous analyses have assumed simple empirical models for astrophysical noise without detailed calibration or justification. We outline a framework for assessing the reliability of such methods by constructing and testing more advanced baryonic models using cosmological hydrodynamical simulations. As a case study, we use the Horizon-AGN simulation to investigate warping of stellar disks and offsets between gas and stars within galaxies, which are powerful probes of screened fifth forces. We show that the degree of `U'-shaped warping of galaxies is well modelled by Gaussian random noise, but that the magnitude of the gas-star offset is correlated with the virial radius of the host halo. By incorporating this correlation we confirm recent results ruling out astrophysically relevant Hu-Sawicki $f(R)$ gravity, and identify a $\sim 30\%$ systematic uncertainty due to baryonic physics. Such an analysis must be performed case-by-case for future galactic tests of fundamental physics.Reconstructing the gravitational field of the local universe
Monthly Notices of the Royal Astronomical Society Blackwell Publishing Inc.