Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr Harry Desmond

Visitor

Research theme

  • Astronomy and astrophysics
  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
harry.desmond@physics.ox.ac.uk
Telephone: 01865(2)83019
ICG webpage
  • About
  • Publications

Challenges to a sharp change in $G$ as a solution to the Hubble tension

ArXiv 2411.15301 (2024)

Authors:

Indranil Banik, Harry Desmond, Nick Samaras
Details from ArXiV

Symmetry in Hyper Suprime-Cam Galaxy Spin Directions

Research Notes of the American Astronomical Society American Astronomical Society 8:11 (2024) 281

Authors:

Richard Stiskalek, Harry Desmond

Abstract:

We perform a Bayesian analysis of anisotropy in binary galaxy spin directions in the Hyper-Suprime Cam Data Release 3 catalog, in response to a recent claim that it exhibits a dipole. We find no significant evidence for anisotropy, or for a direction-independent spin probability that differs from 0.5. These results are unchanged allowing for a quadrupole or simply searching for a fixed anisotropy between any two hemispheres, and the Bayes factor indicates decisive evidence for the isotropic model. Our principled method contrasts with the statistic employed by Shamir, which lacks a strong theoretical foundation. Our code is available at ✎.
More details from the publisher
Details from ORA

Evaluating the variance of individual halo properties in constrained cosmological simulations

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 534:4 (2024) 3120-3132

Authors:

Richard Stiskalek, Harry Desmond, Julien Devriendt, Adrianne Slyz
More details from the publisher
More details

No evidence for anisotropy in galaxy spin directions

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 534:2 (2024) 1553-1560

Authors:

Dhruva Patel, Harry Desmond
More details from the publisher
More details

A precise symbolic emulator of the linear matter power spectrum

Astronomy and Astrophysics EDP Sciences 686 (2024) a209

Authors:

Deaglan J Bartlett, Lukas Kammerer, Gabriel Kronberger, Harry Desmond, Pedro G Ferreira, Benjamin D Wandelt, Bogdan Burlacu, David Alonso, Matteo Zennaro

Abstract:

Context. Computing the matter power spectrum, P(k), as a function of cosmological parameters can be prohibitively slow in cosmological analyses, hence emulating this calculation is desirable. Previous analytic approximations are insufficiently accurate for modern applications, so black-box, uninterpretable emulators are often used.

Aims. We aim to construct an efficient, differentiable, interpretable, symbolic emulator for the redshift zero linear matter power spectrum which achieves sub-percent level accuracy. We also wish to obtain a simple analytic expression to convert As to σ8 given the other cosmological parameters.

Methods. We utilise an efficient genetic programming based symbolic regression framework to explore the space of potential mathematical expressions which can approximate the power spectrum and σ8. We learn the ratio between an existing low-accuracy fitting function for P(k) and that obtained by solving the Boltzmann equations and thus still incorporate the physics which motivated this earlier approximation.

Results. We obtain an analytic approximation to the linear power spectrum with a root mean squared fractional error of 0.2% between k = 9 × 10−3 − 9 h Mpc−1 and across a wide range of cosmological parameters, and we provide physical interpretations for various terms in the expression. Our analytic approximation is 950 times faster to evaluate than CAMB and 36 times faster than the neural network based matter power spectrum emulator BACCO. We also provide a simple analytic approximation for σ8 with a similar accuracy, with a root mean squared fractional error of just 0.1% when evaluated across the same range of cosmologies. This function is easily invertible to obtain As as a function of σ8 and the other cosmological parameters, if preferred.

Conclusions. It is possible to obtain symbolic approximations to a seemingly complex function at a precision required for current and future cosmological analyses without resorting to deep-learning techniques, thus avoiding their black-box nature and large number of parameters. Our emulator will be usable long after the codes on which numerical approximations are built become outdated.

More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet