Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Dr Dharmalingam Prabhakaran

Researcher

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Synthesis and crystal growth
dharmalingam.prabhakaran@physics.ox.ac.uk
Telephone: 01865 (2)72270,01865 (2)72351,01865 (2)72341
Clarendon Laboratory, room 177,377,373
  • About
  • Publications

Magnetoelectric domains and their switching mechanism in a Y-type hexaferrite

Physical Review B American Physical Society 100:2019 (2019) 104411

Authors:

FP Chmiel, D Prabahakaran, P Steadman, J Chen, R Fan, RD Johnson, Paolo Radaelli

Abstract:

By employing resonant X-ray microdiffraction, we image the magnetisation and magnetic polarity domains of the Y-type hexaferrite Ba$_{0.5}$Sr$_{1.5}$Mg$_2$Fe$_{12}$O$_{22}$. We show that the magnetic polarity domain structure can be controlled by both magnetic and electric fields, and that full inversion of these domains can be achieved simply by reversal of an applied magnetic field in the absence of an electric field bias. Furthermore, we demonstrate that the diffraction intensity measured in different X-ray polarisation channels cannot be reproduced by the accepted model for the polar magnetic structure, known as the 2-fan transverse conical (TC) model. We propose a modification to this model, which achieves good quantitative agreement with all of our data. We show that the deviations from the TC model are large, and may be the result of an internal magnetic chirality, most likely inherited from the parent helical (non-polar) phase.
More details from the publisher
Details from ORA
More details
Details from ArXiV
More details

FeTi$_2$O$_5$: a spin Jahn-Teller transition tuned by cation substitution

Physical Review B American Physical Society 100 (2019) 094401

Authors:

Franz Lang, L Jowitt, D Prabhakaran, RD Johnson, SJ Blundell

Abstract:

We have used muon-spin rotation, heat capacity and x-ray diffraction measurements in combination with density functional theory and dipole field calculations to investigate the crystal and magnetic structure of FeTi$_2$O$_5$. We observe a long range ordered state below 41.8(5) K with indications of significant correlations existing above this temperature. We determine candidate muon stopping sites in this compound, and find that our data are consistent with the spin Jahn-Teller driven antiferromagnetic ground state with k=(1/2,1/2,0) reported for CoTi$_2$O$_5$. By comparing our data with calculated dipolar fields we can restrict the possible moment size and directions of the Fe$^{2+}$ ions.
More details from the publisher
Details from ORA
More details
Details from ArXiV
More details

Manifold of spin states and dynamical temperature effects in LaCoO3: Experimental and theoretical insights

Physical Review B American Physical Society (APS) 100:5 (2019) 054306

Authors:

M Feygenson, D Novoselov, S Pascarelli, R Chernikov, O Zaharko, F Porcher, D Karpinsky, A Nikitin, D Prabhakaran, A Sazonov, V Sikolenko
More details from the publisher
More details

Spin-orbit excitons in CoO

Physical Review B American Physical Society (APS) 100:7 (2019) 075143

Authors:

PM Sarte, M Songvilay, E Pachoud, RA Ewings, CD Frost, D Prabhakaran, KH Hong, AJ Browne, Z Yamani, JP Attfield, EE Rodriguez, SD Wilson, C Stock
More details from the publisher

Topological Lifshitz transitions and Fermi arc manipulation in Weyl semimetal NbAs.

Nature communications 10:1 (2019) 3478

Authors:

HF Yang, LX Yang, ZK Liu, Y Sun, C Chen, H Peng, M Schmidt, D Prabhakaran, BA Bernevig, C Felser, BH Yan, YL Chen

Abstract:

Surface Fermi arcs (SFAs), the unique open Fermi-surfaces (FSs) discovered recently in topological Weyl semimetals (TWSs), are unlike closed FSs in conventional materials and can give rise to many exotic phenomena, such as anomalous SFA-mediated quantum oscillations, chiral magnetic effects, three-dimensional quantum Hall effect, non-local voltage generation and anomalous electromagnetic wave transmission. Here, by using in-situ surface decoration, we demonstrate successful manipulation of the shape, size and even the connections of SFAs in a model TWS, NbAs, and observe their evolution that leads to an unusual topological Lifshitz transition not caused by the change of the carrier concentration. The phase transition teleports the SFAs between different parts of the surface Brillouin zone. Despite the dramatic surface evolution, the existence of SFAs is robust and each SFA remains tied to a pair of Weyl points of opposite chirality, as dictated by the bulk topology.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • Current page 14
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet