Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Dr Dharmalingam Prabhakaran

Researcher

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Synthesis and crystal growth
dharmalingam.prabhakaran@physics.ox.ac.uk
Telephone: 01865 (2)72270,01865 (2)72351,01865 (2)72341
Clarendon Laboratory, room 177,377,373
  • About
  • Publications

Crystal Growth of Pyrochlore Compounds

Chapter in Spin Ice, Springer Nature 197 (2021) 19-35
More details from the publisher

Author Correction: Polarizing an antiferromagnet by optical engineering of the crystal field

Nature Physics Springer Nature 16:12 (2020) 1238-1238

Authors:

Ankit S Disa, Michael Fechner, Tobia F Nova, Biaolong Liu, Michael Först, Dharmalingam Prabhakaran, Paolo G Radaelli, Andrea Cavalleri
More details from the publisher
More details

Fragmented monopole crystal, dimer entropy, and Coulomb interactions in Dy2Ir2O7

Physical Review Research American Physical Society (APS) 2:3 (2020) 032073

Authors:

V Cathelin, E Lefrançois, J Robert, PC Guruciaga, C Paulsen, D Prabhakaran, P Lejay, F Damay, J Ollivier, B Fåk, LC Chapon, R Ballou, V Simonet, PCW Holdsworth, E Lhotel
More details from the publisher
More details

Avoided quasiparticle decay and enhanced excitation continuum in the spin-1/2 near-Heisenberg triangular antiferromagnet Ba3CoSb2O9

Physical Review B: Condensed Matter and Materials Physics American Physical Society 102 (2020) 064421

Authors:

David Macdougal, Stephanie Williams, Dharmalingam Prabhakaran, Robert I Bewley, David J Voneshen, Radu Coldea

Abstract:

We explore the magnetic excitations of the spin-1/2 triangular antiferromagnet Ba3CoSb2O9 in its 120 degree ordered phase using single-crystal high-resolution inelastic neutron scattering. Sharp magnons with no decay are observed throughout reciprocal space, with a strongly renormalized dispersion and multiple soft modes compared to linear spin wave theory. We propose an empirical parametrization that can quantitatively capture the complete dispersions in the three-dimensional Brillouin zone and explicitly show that the dispersion renormalizations have the direct consequence that one to two magnon decays are avoided throughout reciprocal space, whereas such decays would be allowed for the unrenormalized dispersions. At higher energies, we observe a very strong continuum of excitations with highly-structured intensity modulations extending up at least 4x the maximum one-magnon energy. The one-magnon intensities decrease much faster upon increasing energy than predicted by linear spin wave theory and the higher-energy continuum contains much more intensity than can be accounted for by a two-magnon cross-section, suggesting a significant transfer of spectral weight from the high-energy magnons into the higher-energy continuum states. We attribute the strong dispersion renormalizations and substantial transfer of spectral weight to continuum states to the effect of quantum fluctuations and interactions beyond the spin wave approximation, and make connections to theoretical approaches that might capture such effects. Finally, through measurements in a strong applied magnetic field, we find evidence for magnetic domains with opposite senses for the spin rotation in the 120 degree ordered ground state, as expected in the absence of Dzyaloshinskii-Moriya interactions, when the sense of spin rotation is selected via spontaneous symmetry breaking.
More details
More details from the publisher
Details from ORA
More details
Details from ArXiV

2D photocatalysts with tuneable supports for enhanced photocatalytic water splitting

Materials Today Elsevier 41 (2020) 34-43

Authors:

Yiyang Li, Simson Wu, Jianwei Zheng, Yung-Kang Peng, Dharmalingam Prabhakaran, Robert Taylor, Shik Tsang

Abstract:

Sustainable hydrogen production is attracting increasing attention and visible-light-driven water splitting is considered as one of the most promising approaches for hydrogen evolution and solar energy storage. Different materials have been screened at mild conditions in recent decades and 2-dimensional (2D) layered materials are considered good candidates for the photocatalytic water splitting reaction. 2D single layer MoS2 has shown its potential in various catalytic systems, and has also been used in photocatalytic water splitting reaction recently. However, current studies of MoS2 monolayers give low intrinsic activity, preventing it from practical applications. This is attributed to the rapid recombination of the photo-excited charge carriers at room temperature, resulting in poor quantum efficiency (QE). Herein, a state-of-the-art strategy to prolong the exciton lifetimes is reported, which is achieved by combining the 2D MoS2 nanosheets with solid state polar-faceted supports. The charge separation process can be facilitated by the strong local polarisation introduced by the polar-faceted supports, and tuned by changing the supports with different surface polarities. Polar oxide surface is the exposure of oxygen-terminated high energetic facet, which is known to give a net dipole moment perpendicular to its surface. Such variation in the surface properties of the support to the above metal would lead to a difference in metal-support interaction(s). The resulting composite structures show great enhancement toward the visible-light-driven photocatalytic water splitting reaction, giving hydrogen and oxygen evolution in a stoichiometric 2:1 ratio at elevated temperatures from pure water. Photocatalytic performances are improved by the prolonged exciton lifetimes and exceptional hydrogen evolution activity of 2977 μmol g−1 h−1 with impressive QEs are obtained over Ru-doped MoS2 nanosheets on polar ceria support, which is among the best of the reported results of similar catalytic systems to date. More excitingly, the linear relationship between the exciton lifetimes and strength of the local polarisation is also observed, indicating that the rational design of photocatalysts can be simply achieved via engineering their local polarisation by incorporation of polar-faceted materials.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • Current page 12
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet