Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Relativistic Jet from Black Hole

An artist's impression of a relativistic jet propagating away from a black hole at close to the speed of light. Such jets are formed by the inner regions of the accretion flow: matter flowing inwards towards the black hole, via processes which are not yet fully understood. The accretion flow emits primarily in X-rays, the relativistic jet in the radio band: by combing observations in each band we can try and understand how such jets form and how much energy they carry away from the black hole.

Professor Rob Fender

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
  • Gamma-ray astronomy
Rob.Fender@physics.ox.ac.uk
Telephone: 01865 (2)73435
Denys Wilkinson Building, room 712
  • About
  • Publications

Finding radio transients with anomaly detection and active learning based on volunteer classifications

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 538:3 (2025) staf336

Authors:

Alex Andersson, Chris Lintott, Rob Fender, Michelle Lochner, Patrick Woudt, Jakob van den Eijnden, Alexander van der Horst, Assaf Horesh, Payaswini Saikia, Gregory R Sivakoff, Lilia Tremou, Mattia Vaccari

Abstract:

<jats:title>ABSTRACT</jats:title> <jats:p>In this work, we explore the applicability of unsupervised machine learning algorithms to finding radio transients. Facilities such as the Square Kilometre Array (SKA) will provide huge volumes of data in which to detect rare transients; the challenge for astronomers is how to find them. We demonstrate the effectiveness of anomaly detection algorithms using 1.3 GHz light curves from the SKA precursor MeerKAT. We make use of three sets of descriptive parameters (‘feature sets’) as applied to two anomaly detection techniques in the astronomaly package and analyse our performance by comparison with citizen science labels on the same data set. Using transients found by volunteers as our ground truth, we demonstrate that anomaly detection techniques can recall over half of the radio transients in the 10 per cent of the data with the highest anomaly scores. We find that the choice of anomaly detection algorithm makes a minor difference, but that feature set choice is crucial, especially when considering available resources for human inspection and/or follow-up. Active learning, where human labels are given for just 2 per cent of the data, improves recall by up to 20 percentage points, depending on the combination of features and model used. The best-performing results produce a factor of 5 times fewer sources requiring vetting by experts. This is the first effort to apply anomaly detection techniques to finding radio transients and shows great promise for application to other data sets, and as a real-time transient detection system for upcoming large surveys.</jats:p>
More details from the publisher
More details

The Radio Counterpart to the Fast X-Ray Transient EP240414a

The Astrophysical Journal American Astronomical Society 981:1 (2025) 48

Authors:

Joe S Bright, Francesco Carotenuto, Rob Fender, Carmen Choza, Andrew Mummery, Peter G Jonker, Stephen J Smartt, David R DeBoer, Wael Farah, James Matthews, Alexander W Pollak, Lauren Rhodes, Andrew Siemion

Abstract:

Despite being operational for only a short time, the Einstein Probe mission, with its large field of view and rapid localization capabilities, has already significantly advanced the study of rapid variability in the soft X-ray sky. We report the discovery of luminous and variable radio emission from the Einstein Probe fast X-ray transient EP240414a, the second such source with a radio counterpart. The radio emission at 3 GHz peaks at ∼30 days postexplosion and with a spectral luminosity ∼2 × 1030 erg s−1 Hz−1, similar to what is seen from long gamma-ray bursts, and distinct from other extragalactic transients including supernovae and tidal disruption events, although we cannot completely rule out emission from engine driven stellar explosions, e.g., the fast blue optical transients. An equipartition analysis of our radio data reveals that an outflow with at least a moderate bulk Lorentz factor (Γ ≳ 1.6) with a minimum energy of ∼1048 erg is required to explain our observations. The apparent lack of a reported gamma-ray counterpart to EP240414a could suggest that an off-axis or choked jet could be responsible for the radio emission, although a low-luminosity gamma-ray burst may have gone undetected. Our observations are consistent with the hypothesis that a significant fraction of extragalactic fast X-ray transients are associated with the deaths of massive stars.
More details from the publisher
Details from ORA
More details

Contemporaneous optical-radio observations of a fast radio burst in a close galaxy pair

(2025)

Authors:

KY Hanmer, I Pastor-Marazuela, J Brink, D Malesani, BW Stappers, PJ Groot, AJ Cooper, N Tejos, DAH Buckley, ED Barr, MC Bezuidenhout, S Bloemen, M Caleb, LN Driessen, R Fender, F Jankowski, M Kramer, DLA Pieterse, KM Rajwade, J Tian, PM Vreeswijk, R Wijnands, PA Woudt
More details from the publisher

On the distance to the black hole X-ray binary Swift J1727.8$-$1613

(2025)

Authors:

Benjamin J Burridge, James CA Miller-Jones, Arash Bahramian, Steve R Prabu, Reagan Streeter, Noel Castro Segura, Jesús M Corral Santana, Christian Knigge, Evangelia Tremou, Francesco Carotenuto, Rob Fender, Payaswini Saikia
Details from ArXiV

The Observed Phase Space of Mass-loss History from Massive Stars Based on Radio Observations of a Large Supernova Sample

The Astrophysical Journal American Astronomical Society 979:2 (2025) 189

Authors:

Itai Sfaradi, Assaf Horesh, Rob Fender, Lauren Rhodes, Joe Bright, David Williams-Baldwin, Dave A Green

Abstract:

In this work, we study the circumstellar material (CSM) around massive stars, and the mass-loss rates depositing this CSM, using a large sample of radio observations of 325 core-collapse supernovae (CCSNe; only ~22% of them being detected). This sample comprises both archival data and our new observations of 99 CCSNe conducted with the AMI-LA radio array in a systematic approach devised to constrain the mass loss at different stages of stellar evolution. In the supernova (SN)–CSM interaction model, observing the peak of the radio emission of an SN provides the CSM density at a given radius (and therefore the mass-loss rate that deposited this CSM). On the other hand, limits on the radio emission, and/or on the peak of the radio emission provide a region in the CSM phase space that can be ruled out. Our analysis shows a discrepancy between the values of mass-loss rates derived from radio-detected and radio-nondetected SNe. Furthermore, we rule out mass-loss rates in the range of 2 × 10−6–10−4 M⊙ yr−1 for different epochs during the last 1000 yr before the explosion (assuming wind velocity of 10 km s−1) for the progenitors of ~80% of the Type II supernovae (SNe II) in our sample. In addition, we rule out the ranges of mass-loss rates suggested for red supergiants for ~50% of the progenitors of SNe II in our sample. We emphasize here that these results take a step forward in constraining mass loss in winds from a statistical point of view.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Current page 10
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet