Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Relativistic Jet from Black Hole

An artist's impression of a relativistic jet propagating away from a black hole at close to the speed of light. Such jets are formed by the inner regions of the accretion flow: matter flowing inwards towards the black hole, via processes which are not yet fully understood. The accretion flow emits primarily in X-rays, the relativistic jet in the radio band: by combing observations in each band we can try and understand how such jets form and how much energy they carry away from the black hole.

Professor Rob Fender

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
  • Gamma-ray astronomy
Rob.Fender@physics.ox.ac.uk
Telephone: 01865 (2)73435
Denys Wilkinson Building, room 712
  • About
  • Publications

Constraining the physical properties of large-scale jets from black hole X-ray binaries and their impact on the local environment with blast-wave dynamical models

(2024)

Authors:

Francesco Carotenuto, Rob Fender, Alexandra J Tetarenko, Stéphane Corbel, Andrzej A Zdziarski, Gulzar Shaik, Alex J Cooper, Irene Di Palma
More details from the publisher
Details from ArXiV

Swift J1727.8-1613 has the Largest Resolved Continuous Jet Ever Seen in an X-ray Binary

(2024)

Authors:

Callan M Wood, James CA Miller-Jones, Arash Bahramian, Steven J Tingay, Steve Prabu, Thomas D Russell, Pikky Atri, Francesco Carotenuto, Diego Altamirano, Sara E Motta, Lucas Hyland, Cormac Reynolds, Stuart Weston, Rob Fender, Elmar Körding, Dipankar Maitra, Sera Markoff, Simone Migliari, David M Russell, Craig L Sarazin, Gregory R Sivakoff, Roberto Soria, Alexandra J Tetarenko, Valeriu Tudose
More details from the publisher
Details from ArXiV

X-Ray and Radio Monitoring of the Neutron Star Low-mass X-Ray Binary 1A 1744-361: Quasiperiodic Oscillations, Transient Ejections, and a Disk Atmosphere

The Astrophysical Journal American Astronomical Society 966:2 (2024) 232

Authors:

Mason Ng, Andrew K Hughes, Jeroen Homan, Jon M Miller, Sean N Pike, Diego Altamirano, Peter Bult, Deepto Chakrabarty, DJK Buisson, Benjamin M Coughenour, Rob Fender, Sebastien Guillot, Tolga Güver, Gaurava K Jaisawal, Amruta D Jaodand, Christian Malacaria, James CA Miller-Jones, Andrea Sanna, Gregory R Sivakoff, Tod E Strohmayer, John A Tomsick, Jakob van den Eijnden

Abstract:

We report on X-ray (NICER/NuSTAR/MAXI/Swift) and radio (MeerKAT) timing and spectroscopic analysis from a 3 month monitoring campaign in 2022 of a high-intensity outburst of the dipping neutron star low-mass X-ray binary 1A 1744−361. The 0.5–6.8 keV NICER X-ray hardness–intensity and color–color diagrams of the observations throughout the outburst suggest that 1A 1744−361 spent most of its outburst in an atoll-state, but we show that the source exhibited Z-state-like properties at the peak of the outburst, similar to a small sample of other atoll-state sources. A timing analysis with NICER data revealed several instances of an ≈8 Hz quasiperiodic oscillation (QPO; fractional rms amplitudes of ∼5%) around the peak of the outburst, the first from this source, which we connect to the normal branch QPOs seen in the Z-state. Our observations of 1A 1744−361 are fully consistent with the idea of the mass accretion rate being the main distinguishing parameter between atoll- and Z-states. Radio monitoring data by MeerKAT suggests that the source was at its radio-brightest during the outburst peak, and that the source transitioned from the “island” spectral state to the “banana” state within ∼3 days of the outburst onset, launching transient jet ejecta. The observations present the strongest evidence for radio flaring, including jet ejecta, during the island-to-banana spectral state transition at low accretion rates (atoll-state). The source also exhibited Fe xxv, Fe xxvi Kα, and Kβ X-ray absorption lines, whose origins likely lie in an accretion disk atmosphere.
More details from the publisher
Details from ORA
More details

A new method for short-duration transient detection in radio images: searching for transient sources in MeerKAT data of NGC 5068

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 528:4 (2024) 6985-6996

Authors:

S Fijma, A Rowlinson, RAMJ Wijers, I de Ruiter, WJG de Blok, S Chastain, AJ van der Horst, ZS Meyers, K van der Meulen, R Fender, PA Woudt, A Andersson, A Zijlstra, J Healy, FM Maccagni
More details from the publisher
More details

Filling the radio transients gap (or: The case for a dedicated radio transients monitoring array in the southern hemisphere)

(2024)

Authors:

Rob Fender, Assaf Horesh, Phil Charles, Patrick Woudt, James Miller-Jones, Joe Bright
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • Current page 11
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet