Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Dr Joseph Goodwin

Associate Professor and UKRI ERC Fellow

Research theme

  • Quantum information and computation

Sub department

  • Atomic and Laser Physics

Research groups

  • Ion trap quantum computing
joseph.goodwin@physics.ox.ac.uk
  • About
  • Publications

High-rate high-fidelity entanglement of qubits across an elementary quantum network

Physical Review Letters American Physical Society 124:11 (2020) 110501

Authors:

Laurent Stephenson, David Nadlinger, Bethan Nichol, Peter Drmota, Timothy Ballance, Keshav Thirumalai, Joseph Goodwin, David Lucas, Christopher Ballance

Abstract:

We demonstrate remote entanglement of trapped-ion qubits via a quantum-optical fiber link with fidelity and rate approaching those of local operations. Two 88Sr+ qubits are entangled via the polarization degree of freedom of two spontaneously emitted 422 nm photons which are coupled by high-numerical-aperture lenses into single-mode optical fibers and interfere on a beam splitter. A novel geometry allows high-efficiency photon collection while maintaining unit fidelity for ion-photon entanglement. We generate heralded Bell pairs with fidelity 94% at an average rate 182 s−1 (success probability 2.18×10−4).

More details from the publisher
Details from ORA
More details
More details

High-rate, high-fidelity entanglement of qubits across an elementary quantum network

(2019)

Authors:

LJ Stephenson, DP Nadlinger, BC Nichol, S An, P Drmota, TG Ballance, K Thirumalai, JF Goodwin, DM Lucas, CJ Ballance
More details from the publisher
Details from ArXiV

Probing qubit memory errors at the part-per-million level

Physical Review Letters American Physical Society 123:11 (2019) 110503

Authors:

MA Sepiol, AC Hughes, JE Tarlton, DP Nadlinger, TG Ballance, CJ Ballance, TP Harty, AM Steane, JF Goodwin, David Lucas

Abstract:

Robust qubit memory is essential for quantum computing, both for near-term devices operating without error correction, and for the long-term goal of a fault-tolerant processor. We directly measure the memory error εm for a 43Ca+ trapped-ion qubit in the small-error regime and find εm<10−4 for storage times t ≲ 50  ms. This exceeds gate or measurement times by three orders of magnitude. Using randomized benchmarking, at t = 1  ms we measure εm=1.2(7)×10−6, around ten times smaller than that extrapolated from the T∗2 time, and limited by instability of the atomic clock reference used to benchmark the qubit.

More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Microwave-driven high-fidelity quantum logic with 43Ca+

Optica Publishing Group (2019) s4b.4

Authors:

Ryan K Hanley, Jochen Wolf, Clemens M Löschnauer, Marius Weber, Joseph F Goodwin, Thomas P Harty, Andrew M Steane, David M Lucas
More details from the publisher

Networking Trapped-ion Quantum Computers

Optica Publishing Group (2019) s2d.1

Authors:

CJ Ballance, LJ Stephenson, DP Nadlinger, BC Nichol, S An, JF Goodwin, P Drmota, DM Lucas
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet