Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Dr Joseph Goodwin

UKRI ERC Frontier Research Fellow

Research theme

  • Quantum information and computation

Sub department

  • Atomic and Laser Physics

Research groups

  • Ion trap quantum computing
joseph.goodwin@physics.ox.ac.uk
  • About
  • Publications

High-rate, high-fidelity entanglement of qubits across an elementary quantum network

(2019)

Authors:

LJ Stephenson, DP Nadlinger, BC Nichol, S An, P Drmota, TG Ballance, K Thirumalai, JF Goodwin, DM Lucas, CJ Ballance
More details from the publisher
Details from ArXiV

Probing qubit memory errors at the part-per-million level

Physical Review Letters American Physical Society 123:11 (2019) 110503

Authors:

MA Sepiol, AC Hughes, JE Tarlton, DP Nadlinger, TG Ballance, CJ Ballance, TP Harty, AM Steane, JF Goodwin, David Lucas

Abstract:

Robust qubit memory is essential for quantum computing, both for near-term devices operating without error correction, and for the long-term goal of a fault-tolerant processor. We directly measure the memory error εm for a 43Ca+ trapped-ion qubit in the small-error regime and find εm<10−4 for storage times t ≲ 50  ms. This exceeds gate or measurement times by three orders of magnitude. Using randomized benchmarking, at t = 1  ms we measure εm=1.2(7)×10−6, around ten times smaller than that extrapolated from the T∗2 time, and limited by instability of the atomic clock reference used to benchmark the qubit.

More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Microwave-driven high-fidelity quantum logic with 43Ca+

Optica Publishing Group (2019) s4b.4

Authors:

Ryan K Hanley, Jochen Wolf, Clemens M Löschnauer, Marius Weber, Joseph F Goodwin, Thomas P Harty, Andrew M Steane, David M Lucas
More details from the publisher

Networking Trapped-ion Quantum Computers

Optica Publishing Group (2019) s2d.1

Authors:

CJ Ballance, LJ Stephenson, DP Nadlinger, BC Nichol, S An, JF Goodwin, P Drmota, DM Lucas
More details from the publisher

A short response-time atomic source for trapped ion experiments

Review of Scientific Instruments AIP Publishing 89:5 (2018) 053102

Authors:

Timothy G Ballance, Joseph Goodwin, B Nichol, LJ Stephenson, CJ Ballance, DM Lucas

Abstract:

Ion traps are often loaded from atomic beams produced by resistively heated ovens. We demonstrate an atomic oven which has been designed for fast control of the atomic flux density and reproducible construction. We study the limiting time constants of the system and, in tests with 40Ca, show we can reach the desired level of flux in 12 s, with no overshoot. Our results indicate that it may be possible to achieve an even faster response by applying an appropriate one-off heat treatment to the oven before it is used.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet