Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Space and Planets (artistic image)
Credit: hdwallpaperim.com/

Gianluca Gregori

Professor of Physics

Research theme

  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Laboratory astroparticle physics
  • Oxford Centre for High Energy Density Science (OxCHEDS)
Gianluca.Gregori@physics.ox.ac.uk
Telephone: 01865 (2)82639
Clarendon Laboratory, room 029.8
  • About
  • Publications

Experimental platform for the investigation of magnetized-reverse-shock dynamics in the context of POLAR

High Power Laser Science and Engineering Cambridge University Press 6 (2018) e43

Authors:

Gianluca Gregori, B Albertazzi, E Falize, E Falize, A Pelka, F Brack, F Kroll, R Yurchak, E Brambrink, P Mabey, N Ozaki, S Pikuz, L Van Box Som, JM Bonnet-Bidaud, JE Cross, E Filippov, R Kodama, M Mouchet, T Morita, Y Sakawa, RP Drake, CC Kuranz, MJE Manuel, C Li, P Tzeferacos, D Lamb, U Schramm, M Koenig

Abstract:

The influence of a strong external magnetic field on the collimation of a high Mach number plasma flow and its collision with a solid obstacle is investigated experimentally and numerically. The laser irradiation (I ∼ 2 × 1014 W · cm−2 ) of a multilayer target generates a shock wave that produces a rear side plasma expanding flow. Immersed in a homogeneous 10 T external magnetic field, this plasma flow propagates in vacuum and impacts an obstacle located a few mm from the main target. A reverse shock is then formed with typical velocities of the order of 15–20 ± 5 km/s. The experimental results are compared with 2D radiative magnetohydrodynamic simulations using the FLASH code. This platform allows investigating the dynamics of reverse shock, mimicking the processes occurring in a cataclysmic variable of polar type.
More details from the publisher
Details from ORA
More details

Axion-driven cosmic magnetogenesis prior to the QCD crossover

Physical Review Letters American Physical Society 121:2 (2018) 021301

Authors:

Francesco Miniati, G Gregori, B Reville, Subir Sarkar

Abstract:

We propose a mechanism for the generation of a magnetic field in the early Universe during the QCD crossover assuming that dark matter is made of axions. Thermoelectric fields arise at pressure gradients in the primordial plasma due to the difference in charge, energy density, and equation of state between the quark and lepton components. The axion field is coupled to the EM field, so when its spatial gradient is misaligned with the thermoelectric field, an electric current is driven. Because of the finite resistivity of the plasma, an electric field appears that is generally rotational. For a QCD axion mass consistent with observational constraints and a conventional efficiency for turbulent dynamo amplification—driven by the same pressure gradients responsible for the thermoelectric fields—a magnetic field is generated on subhorizon scales. After significant Alfvénic unwinding, it reaches a present-day strength of B ∼ 10 − 13     G on a characteristic scale L B ∼ 20     pc . The resulting combination of B L 1 / 2 B is significantly stronger than in any astrophysical scenario, providing a clear test for the cosmological origin of the field through γ -ray observations of distant blazars. The amplitude of the pressure gradients may be inferred from the detection of concomitant gravitational waves, while several experiments are underway to confirm or rule out the existence of axions.
More details from the publisher
Details from ORA
More details
More details
More details
Details from ArXiV

Setup for meV-resolution inelastic X-ray scattering measurements at the Matter in Extreme Conditions Endstation at the LCLS

(2018)

Authors:

EE McBride, TG White, A Descamps, LB Fletcher, K Appel, F Condamine, CB Curry, F Dallari, S Funk, E Galtier, M Gauthier, S Goede, JB Kim, HJ Lee, BK Ofori-Okai, M Oliver, A Rigby, C Schoenwaelder, P Sun, Th Tschentscher, BBL Witte, U Zastrau, G Gregori, B Nagler, J Hastings, SH Glenzer, G Monaco
More details from the publisher

Analytical modelling of the expansion of a solid obstacle interacting with a radiative shock

High Power Laser Science and Engineering Cambridge University Press 6 (2018) e30

Authors:

Th Michel, E Falize, B Albertazzi, G Rigon, Y Sakawa, Gianluca Gregori, Et al.

Abstract:

In this paper, we present a model characterizing the interaction of a radiative shock (RS) with a solid material, as described in a recent paper (Koenig et al., Phys. Plasmas, 24, 082707 (2017)), the new model is then related to recent experiments performed on the GEKKO XII laser facility. The RS generated in a xenon gas cell propagates towards a solid obstacle that is ablated by radiation coming from the shock front and the radiative precursor, mimicking processes occurring in astrophysical phenomena. The model presented here calculates the dynamics of the obstacle expansion, which depends on several parameters, notably the geometry and the temperature of the shock. All parameters required for the model have been obtained from experiments. Good agreement between experimental data and the model is found when spherical geometry is taken into account. As a consequence, this model is a useful and easy tool to infer parameters from experimental data (such as the shock temperature), and also to design future experiments.
More details from the publisher
Details from ORA
More details

Measurement of temperature and density using non-collective X-ray Thomson scattering in pulsed power produced warm dense plasmas

Scientific Reports Nature Publishing Group 8 (2018) 8432

Authors:

JC Valenzuela, C Krauland, D Mariscal, I Krashennikov, C Niemann, T Ma, P Mabey, Gianluca Gregori, P Wiewior, A Covington, FN Beg

Abstract:

We present the first experimental measurement of temperature and density of a warm dense plasma produced by a pulsed power driver at the Nevada Terawatt Facility (NTF). In the early phases of discharge, most of the mass remains in the core, and it has been challenging to diagnose with traditional methods, e.g. optical probing, because of the high density and low temperature. Accurate knowledge of the transport coefficients as well as the thermodynamic state of the plasma is important to precisely test or develop theoretical models. Here, we have used spectrally resolved non-collective X-ray Thomson scattering to characterize the dense core region. We used a graphite load driven by the Zebra current generator (0.6 MA in 200 ns rise time) and the Ti He-α line produced by irradiating a Ti target with the Leopard laser (30 J, 0.8 ns) as an X-ray probing source. Using this configuration, we obtained a signal-to-noise ratio ~2.5 for the scattered signal. By fitting the experimental data with predicted spectra, we measured T=2±1.9 eV, ρ=0.6±0.5 gr/cc, 70 ns into the current pulse. The complexity of the dense core is revealed by the electrons in the dense core that are found to be degenerate and weakly coupled, while the ions remain highly coupled.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 28
  • Page 29
  • Page 30
  • Page 31
  • Current page 32
  • Page 33
  • Page 34
  • Page 35
  • Page 36
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet