Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Space and Planets (artistic image)
Credit: hdwallpaperim.com/

Gianluca Gregori

Professor of Physics

Research theme

  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Laboratory astroparticle physics
  • Oxford Centre for High Energy Density Science (OxCHEDS)
Gianluca.Gregori@physics.ox.ac.uk
Telephone: 01865 (2)82639
Clarendon Laboratory, room 029.8
  • About
  • Publications

Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma

Nature Communications Springer Nature 9 (2018) 591

Authors:

P Tzeferacos, Alexandra Rigby, A Bott, A Bell, R Bingham, A Casner, F Cattaneo, EM Churazov, J Emig, F Fiuza, CB Forest, J Foster, C Graziani, J Katz, M Koenig, CK Li, Jena Meinecke, R Petrasso, HS Park, BA Remington, JS Ross, D Ryu, D Ryutov, TG White, B Reville, F Miniati, A Schekochihin, DQ Lamb, DH Froula, Gianluca Gregori

Abstract:

Magnetic fields are ubiquitous in the Universe. Diffuse radiosynchrotron emission observations and Faraday rotation measurements have revealed magnetic field strengths ranging from a few nG and tens of µG in extragalactic disks, halos and clusters [1], up to hundreds of TG in magnetars, as inferred from their spin-down [2]. The energy density of these fields is typically comparable to the energy density of the fluid motions of the plasma in which they are embedded, making magnetic fields essential players in the dynamics of the luminous matter. The standard theoretical model for the origin of these strong magnetic fields is through the amplification of tiny seed fields via turbulent dynamo to the level consistent with current observations [3–7]. Here we demonstrate, using laser-produced colliding plasma flows, that turbulence is indeed capable of rapidly amplifying seed fields to near equipartition with the turbulent fluid motions. These results support the notion that turbulent dynamo is a viable mechanism responsible for the observed present-day magnetization.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

A sensitive EUV Schwarzschild microscope for plasma studies with sub-micrometer resolution

Review of Scientific Instruments AIP Publishing 89:2 (2018) 023703

Authors:

U Zastrau, C Rödel, M Nakatsutsumi, T Feigl, K Appel, B Chen, T Döppner, T Fennel, T Fiedler, LB Fletcher, E Förster, E Gamboa, Gericke, S Göde, C Grote-Fortmann, V Hilbert, L Kazak, T Laarmann, HJ Lee, Paul Mabey, F Martinez, KH Meiwes-Broer, H Pauer, M Perske, A Przystaw, S Roling, S Skruszewicz, M Shihab, J Tiggesbäumker, S Toleikis, M Wünsche, H Zacharias, SH Glenzer, Gianluca Gregori

Abstract:

We present an extreme ultraviolet (EUV) microscope using a Schwarzschild objective which is optimized for single-shot sub-micrometer imaging of laser-plasma targets. The microscope has been designed and constructed for imaging the scattering from an EUV-heated solid-density hydrogen jet. Imaging of a cryogenic hydrogen target was demonstrated using single pulses of the free-electron laser in Hamburg (FLASH) free-electron laser at a wavelength of 13.5 nm. In a single exposure, we observe a hydrogen jet with ice fragments with a spatial resolution in the sub-micrometer range. In situ EUV imaging is expected to enable novel experimental capabilities for warm dense matter studies of micrometer-sized samples in laser-plasma experiments.
More details from the publisher
Details from ORA
More details
More details

Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields

Nature Communications Nature Publishing Group 9 (2018) 1-8

Authors:

M Bailly-Grandvaux, JJ Santos, C Bellei, JE Cross, Gianluca Gregori

Abstract:

Intense lasers interacting with dense targets accelerate relativistic electron beams, which transport part of the laser energy into the target depth. However, the overall laser-to-target energy coupling efficiency is impaired by the large divergence of the electron beam, intrinsic to the laser–plasma interaction. Here we demonstrate that an efficient guiding of MeV electrons with about 30 MA current in solid matter is obtained by imposing a laser-driven longitudinal magnetostatic field of 600 T. In the magnetized conditions the transported energy density and the peak background electron temperature at the 60-μm-thick target's rear surface rise by about a factor of five, as unfolded from benchmarked simulations. Such an improvement of energy-density flux through dense matter paves the ground for advances in laser-driven intense sources of energetic particles and radiation, driving matter to extreme temperatures, reaching states relevant for planetary or stellar science as yet inaccessible at the laboratory scale and achieving high-gain laser-driven thermonuclear fusion.
More details from the publisher
Details from ORA
More details
More details

Evolution of the Design and Fabrication of Astrophysics Targets for Turbulent Dynamo (TDYNO) Experiments on OMEGA

FUSION SCIENCE AND TECHNOLOGY 73:3 (2018) 434-445

Authors:

SA Muller, DN Kaczala, HM Abu-Shawareb, EL Alfonso, LC Carlson, M Mauldin, P Fitzsimmons, D Lamb, P Tzeferacos, L Chen, G Gregori, A Rigby, A Bott, TG White, D Froula, J Katz
More details from the publisher
Details from ORA
More details
More details

Axion particle production in a laser-induced dynamical spacetime

Physics Letters B Elsevier 777 (2017) 388-393

Authors:

M Wadud, B King, R Bingham, Gianluca Gregori

Abstract:

We consider the dynamics of a charged particle (e.g., an electron) oscillating in a laser field in flat spacetime and describe it in terms of the variable mass metric. By applying Einstein’s equivalence principle, we show that, after representing the electron motion in a time-dependent manner, the variable mass metric takes the form of the Friedmann–Lemaître–Robertson–Walker metric. We quantize a pseudoscalar field in this spacetime and derive the production rate of electrically neutral, spinless particles. We show that this approach can provide an alternative experimental method to axion searches.
More details from the publisher
Details from ORA

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 24
  • Page 25
  • Page 26
  • Page 27
  • Current page 28
  • Page 29
  • Page 30
  • Page 31
  • Page 32
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet