Laboratory experiments on plasma jets in a magnetic field using high-power lasers
EPJ Web of Conferences 59 (2013)
Abstract:
The experiments to simulate astrophysical jet generation are performed using Gekko XII (GXII) HIPER laser system at the Institute of Laser Engineering. In the experiments a fast plasma flow generated by shooting a CH plane (10 μm thickness) is observed at the rear side of the plane. By separating the focal spot of the main beams, a non-uniform plasma is generated. The non-uniform plasma flow in an external magnetic field (0.2∼0.3 T) perpendicular to the plasma is more collimated than that without the external magnetic field. The plasma β, the ratio between the plasma and magnetic pressure, is ≠1, and the magnetic Reynolds number is ∼150 in the collimated plasma. It is considered that the magnetic field is distorted by the plasma flow and enhances the jet collimation. © Owned by the authors, published by EDP Sciences, 2013.Orbital-free density-functional theory simulations of the dynamic structure factor of warm dense aluminum
Physical Review Letters 111:17 (2013)
Abstract:
Here, we report orbital-free density-functional theory (OF DFT) molecular dynamics simulations of the dynamic ion structure factor of warm solid density aluminum at T=0.5 eV and T=5 eV. We validate the OF DFT method in the warm dense matter regime through comparison of the static and thermodynamic properties with the more complete Kohn-Sham DFT. This extension of OF DFT to dynamic properties indicates that previously used models based on classical molecular dynamics may be inadequate to capture fully the low frequency dynamics of the response function. © 2013 American Physical Society.Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows
(2013)
Simulation of X-ray scattering diagnostics in multi-dimensional plasma
High Energy Density Physics 9:3 (2013) 510-515
Abstract:
X-ray scattering is a powerful diagnostic technique that has been used in a variety of experimental settings to determine the temperature, density, and ionization state of warm dense matter. In order to maximize the intensity of the scattered signal, the x-ray source is often placed in close proximity to the target plasma. Therefore, the interpretation of the experimental data can become complicated by the fact that the detector records photons scattered at different angles from points within the plasma volume. In addition, the target plasma that is scattering the x-rays can have significant temperature and density gradients. To address these issues, we have developed the capability to simulate x-ray scattering for realistic experimental configurations where the effects of plasma non-uniformities and a range of x-ray scattering angles are included. We will discuss the implementation details and show results relevant to previous and ongoing experimental investigations. © 2013 Elsevier B.V.25aKC-4 超高速その場X線回折による鉄の超高圧相転移観察(非平衡極限プラズマ,領域2(プラズマ基礎・プラズマ科学・核融合プラズマ・プラズマ宇宙物理))
(2013) 177