Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Space and Planets (artistic image)
Credit: hdwallpaperim.com/

Gianluca Gregori

Professor of Physics

Research theme

  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Laboratory astroparticle physics
  • Oxford Centre for High Energy Density Science (OxCHEDS)
Gianluca.Gregori@physics.ox.ac.uk
Telephone: 01865 (2)82639
Clarendon Laboratory, room 029.8
  • About
  • Publications

Probing the complex ion structure in liquid carbon at 100 GPa

Physical Review Letters 111:25 (2013)

Authors:

D Kraus, J Vorberger, DO Gericke, V Bagnoud, A Blažević, W Cayzac, A Frank, G Gregori, A Ortner, A Otten, F Roth, G Schaumann, D Schumacher, K Siegenthaler, F Wagner, K Wünsch, M Roth

Abstract:

We present the first direct experimental test of the complex ion structure in liquid carbon at pressures around 100 GPa, using spectrally resolved x-ray scattering from shock-compressed graphite samples. Our results confirm the structure predicted by ab initio quantum simulations and demonstrate the importance of chemical bonds at extreme conditions similar to those found in the interiors of giant planets. The evidence presented here thus provides a firmer ground for modeling the evolution and current structure of carbon-bearing icy giants like Neptune, Uranus, and a number of extrasolar planets. © 2013 American Physical Society.
More details from the publisher
More details
More details

High Mach-number collisionless shock driven by a laser with an external magnetic field

EPJ Web of Conferences 59 (2013)

Authors:

T Morita, Y Sakawa, Y Kuramitsu, T Ide, K Nishio, M Kuwada, H Ide, K Tsubouchi, H Yoneda, A Nishida, T Namiki, T Norimatsu, K Tomita, K Nakayama, K Inoue, K Uchino, M Nakatsutsumi, A Pelka, M Koenig, Q Dong, D Yuan, G Gregori, H Takabe

Abstract:

Collisionless shocks are produced in counter-streaming plasmas with an external magnetic field. The shocks are generated due to an electrostatic field generated in counter-streaming laser-irradiated plasmas, as reported previously in a series of experiments without an external magnetic field [T. Morita et al., Phys. Plasmas, 17, 122702 (2010), Kuramitsu et al., Phys. Rev. Lett., 106, 175002 (2011)] via laser-irradiation of a double-CH-foil target. A magnetic field is applied to the region between two foils by putting an electro-magnet (∼10 T) perpendicular to the direction of plasma expansion. The generated shocks show different characteristics later in time (t > 20ns). © Owned by the authors, published by EDP Sciences, 2013.
More details from the publisher
More details

High-power laser experiments to study collisionless shock generation

EPJ Web of Conferences 59 (2013)

Authors:

Y Sakawa, Y Kuramitsu, T Morita, T Kato, H Tanji, T Ide, K Nishio, M Kuwada, T Tsubouchi, H Ide, T Norimatsu, C Gregory, N Woolsey, K Schaar, C Murphy, G Gregori, A Diziere, A Pelka, M Koenig, S Wang, Q Dong, Y Li, HS Park, S Ross, N Kugland, D Ryutov, B Remington, A Spitkovsky, D Froula, H Takabe

Abstract:

A collisionless Weibel-instability mediated shock in a self-generated magnetic field is studied using two-dimensional particle-in-cell simulation [Kato and Takabe, Astophys. J. Lett. 681, L93 (2008)]. It is predicted that the generation of the Weibel shock requires to use NIF-class high-power laser system. Collisionless electrostatic shocks are produced in counter-streaming plasmas using Gekko XII laser system [Kuramitsu et al., Phys. Rev. Lett. 106, 175002 (2011)]. A NIF facility time proposal is approved to study the formation of the collisionless Weibel shock. OMEGA and OMEGA EP experiments have been started to study the plasma conditions of counter-streaming plasmas required for the NIF experiment using Thomson scattering and to develop proton radiography diagnostics. © Owned by the authors, published by EDP Sciences, 2013.
More details from the publisher
More details

Laboratory experiments on plasma jets in a magnetic field using high-power lasers

EPJ Web of Conferences 59 (2013)

Authors:

K Nishio, Y Sakawa, Y Kuramitsu, T Morita, T Ide, M Kuwada, M Koga, T Kato, T Norimatsu, C Gregory, N Woolsey, C Murphy, G Gregori, K Schaar, A Diziere, M Koenig, A Pelka, S Wang, Q Dong, Y Li, H Takabe

Abstract:

The experiments to simulate astrophysical jet generation are performed using Gekko XII (GXII) HIPER laser system at the Institute of Laser Engineering. In the experiments a fast plasma flow generated by shooting a CH plane (10 μm thickness) is observed at the rear side of the plane. By separating the focal spot of the main beams, a non-uniform plasma is generated. The non-uniform plasma flow in an external magnetic field (0.2∼0.3 T) perpendicular to the plasma is more collimated than that without the external magnetic field. The plasma β, the ratio between the plasma and magnetic pressure, is ≠1, and the magnetic Reynolds number is ∼150 in the collimated plasma. It is considered that the magnetic field is distorted by the plasma flow and enhances the jet collimation. © Owned by the authors, published by EDP Sciences, 2013.
More details from the publisher
More details

Orbital-free density-functional theory simulations of the dynamic structure factor of warm dense aluminum

Physical Review Letters 111:17 (2013)

Authors:

TG White, S Richardson, BJB Crowley, LK Pattison, JWO Harris, G Gregori

Abstract:

Here, we report orbital-free density-functional theory (OF DFT) molecular dynamics simulations of the dynamic ion structure factor of warm solid density aluminum at T=0.5 eV and T=5 eV. We validate the OF DFT method in the warm dense matter regime through comparison of the static and thermodynamic properties with the more complete Kohn-Sham DFT. This extension of OF DFT to dynamic properties indicates that previously used models based on classical molecular dynamics may be inadequate to capture fully the low frequency dynamics of the response function. © 2013 American Physical Society.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 38
  • Page 39
  • Page 40
  • Page 41
  • Current page 42
  • Page 43
  • Page 44
  • Page 45
  • Page 46
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet