Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Space and Planets (artistic image)
Credit: hdwallpaperim.com/

Gianluca Gregori

Professor of Physics

Research theme

  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Laboratory astroparticle physics
  • Oxford Centre for High Energy Density Science (OxCHEDS)
Gianluca.Gregori@physics.ox.ac.uk
Telephone: 01865 (2)82639
Clarendon Laboratory, room 029.8
  • About
  • Publications

Observation of inhibited electron-ion coupling in strongly heated graphite.

Sci Rep 2 (2012) 889

Authors:

TG White, J Vorberger, CRD Brown, BJB Crowley, P Davis, SH Glenzer, JWO Harris, DC Hochhaus, S Le Pape, T Ma, CD Murphy, P Neumayer, LK Pattison, S Richardson, DO Gericke, G Gregori

Abstract:

Creating non-equilibrium states of matter with highly unequal electron and lattice temperatures (T(ele)≠T(ion)) allows unsurpassed insight into the dynamic coupling between electrons and ions through time-resolved energy relaxation measurements. Recent studies on low-temperature laser-heated graphite suggest a complex energy exchange when compared to other materials. To avoid problems related to surface preparation, crystal quality and poor understanding of the energy deposition and transport mechanisms, we apply a different energy deposition mechanism, via laser-accelerated protons, to isochorically and non-radiatively heat macroscopic graphite samples up to temperatures close to the melting threshold. Using time-resolved x ray diffraction, we show clear evidence of a very small electron-ion energy transfer, yielding approximately three times longer relaxation times than previously reported. This is indicative of the existence of an energy transfer bottleneck in non-equilibrium warm dense matter.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Quantum hydrodynamics of strongly coupled electron fluids

PHYSICAL REVIEW E 85:4 (2012) ARTN 046408

Authors:

R Schmidt, BJB Crowley, J Mithen, G Gregori
More details from the publisher
More details

Self-organized electromagnetic field structures in laser-produced counter-streaming plasmas

Nature Physics (2012)

Authors:

NL Kugland, DD Ryutov, P-Y Chang, RP Drake, G Fiksel, DH Froula, SH Glenzer, G Gregori, M Grosskopf, M Koenig, Y Kuramitsu, C Kuranz, MC Levy, E Liang, J Meinecke, F Miniati, T Morita, A Pelka, C Plechaty, R Presura, A Ravasio, BA Remington, B Reville, JS Ross, Y Sakawa, A Spitkovsky, H Takabe, H-S Park
More details from the publisher

Investigation of fast electron energy coupling in a counter-propagating scheme

38th EPS Conference on Plasma Physics 2011, EPS 2011 - Europhysics Conference Abstracts 35 2 (2011) 1484-1487

Authors:

P Koester, N Booth, CA Cecchetti, H Chen, RG Evans, G Gregori, L Labate, T Levato, B Li, M Makita, J Mithen, C Murphy, M Notley, R Pattathil, D Riley, N Woolsey, LA Gizzi

Abstract:

A detailed knowledge of the physical phenomena underlying the transport of fast electrons generated in high-intensity laser-matter interactions is of fundamental importance for the fast ignition scheme for inertial confinement fusion. The fast electron currents largely exceed the Alfven limit, therefore a balancing return current is required to support the propagation of the fast electron beam in the target medium. An experimental study aimed at investigating the role of the return current on the dynamics of the fast electron beam was carried out with the Vulcan Petawatt beam. Two counter-propagating electron beams were generated by double-sided irradiation of a layered target containing a 5 micron thick Ti layer. Information on the energy coupling of the fast electron beam to the Ti layer was retrieved through X-ray measurements. In particular, high-resolution X-ray spectroscopy of the Ti emission lines was performed in the spectral range from 4.4 to 5.1 keV including the Lyα, the Heα and the Kα line. Spectra were acquired for double-sided irradiation with different timings between the two laser beams as well as for single-sided irradiation. The recorded spectra indicate a higher target temperature for a precise timing between the two beams in agreement with simulation results.

Towards laboratory produced relativistic electron-positron pair plasmas

High Energy Density Physics 7:4 (2011) 225-229

Authors:

H Chen, DD Meyerhofer, SC Wilks, R Cauble, F Dollar, K Falk, G Gregori, A Hazi, EI Moses, CD Murphy, J Myatt, J Park, J Seely, R Shepherd, A Spitkovsky, C Stoeckl, CI Szabo, R Tommasini, C Zulick, P Beiersdorfer

Abstract:

We review recent experimental results on the path to producing electron-positron pair plasmas using lasers. Relativistic pair-plasmas and jets are believed to exist in many astrophysical objects and are often invoked to explain energetic phenomena related to Gamma Ray Bursts and Black Holes. On earth, positrons from radioactive isotopes or accelerators are used extensively at low energies (sub-MeV) in areas related to surface science positron emission tomography and basic antimatter science. Experimental platforms capable of producing the high-temperature pair-plasma and high-flux jets required to simulate astrophysical positron conditions have so far been absent. In the past few years, we performed extensive experiments generating positrons with intense lasers where we found that relativistic electron and positron jets are produced by irradiating a solid gold target with an intense picosecond laser pulse. The positron temperatures in directions parallel and transverse to the beam both exceeded 0.5 MeV, and the density of electrons and positrons in these jets are of order 1016 cm-3 and 1013 cm-3, respectively. With the increasing performance of high-energy ultra-short laser pulses, we expect that a high-density, up to 1018 cm-3, relativistic pair-plasma is achievable, a novel regime of laboratory-produced hot dense matter. © 2011 Elsevier B.V.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 52
  • Page 53
  • Page 54
  • Page 55
  • Current page 56
  • Page 57
  • Page 58
  • Page 59
  • Page 60
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet