Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Space and Planets (artistic image)
Credit: hdwallpaperim.com/

Gianluca Gregori

Professor of Physics

Research theme

  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Laboratory astroparticle physics
  • Oxford Centre for High Energy Density Science (OxCHEDS)
Gianluca.Gregori@physics.ox.ac.uk
Telephone: 01865 (2)82639
Clarendon Laboratory, room 029.8
  • About
  • Publications

Evolution of elastic x-ray scattering in laser-shocked warm dense lithium

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 80:6 (2009)

Authors:

NL Kugland, G Gregori, S Bandyopadhyay, CM Brenner, CRD Brown, C Constantin, SH Glenzer, FY Khattak, AL Kritcher, C Niemann, A Otten, J Pasley, A Pelka, M Roth, C Spindloe, D Riley

Abstract:

We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4-ns-long laser pulses. Separate 1-ns-long laser pulses were used to generate a bright source of 2.96 keV Cl Ly- α photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120° using a highly oriented pyrolytic graphite crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation-hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state Z̄ and by extension to the choice of ionization model in the radiation- hydrodynamics simulations used to predict plasma properties within the shocked Li. © 2009 The American Physical Society.
More details from the publisher
More details
More details

Measurements of ionic structure in shock compressed lithium hydride from ultrafast x-ray Thomson scattering.

Phys Rev Lett 103:24 (2009) 245004

Authors:

AL Kritcher, P Neumayer, CRD Brown, P Davis, T Döppner, RW Falcone, DO Gericke, G Gregori, B Holst, OL Landen, HJ Lee, EC Morse, A Pelka, R Redmer, M Roth, J Vorberger, K Wünsch, SH Glenzer

Abstract:

We present the first ultrafast temporally, spectrally, and angularly resolved x-ray scattering measurements from shock-compressed matter. The experimental spectra yield the absolute elastic and inelastic scattering intensities from the measured density of free electrons. Laser-compressed lithium-hydride samples are well characterized by inelastic Compton and plasmon scattering of a K-alpha x-ray probe providing independent measurements of temperature and density. The data show excellent agreement with the total intensity and structure when using the two-species form factor and accounting for the screening of ion-ion interactions.
More details from the publisher

Measurements of ionic structure in shock compressed lithium hydride from ultrafast X-ray Thomson scattering

Physical Review Letters 103:24 (2009)

Authors:

AL Kritcher, P Neumayer, CRD Brown, P Davis, T Döppner, RW Falcone, DO Gericke, G Gregori, B Holst, OL Landen, HJ Lee, EC Morse, A Pelka, R Redmer, M Roth, J Vorberger, K Wünsch, SH Glenzer

Abstract:

We present the first ultrafast temporally, spectrally, and angularly resolved x-ray scattering measurements from shock-compressed matter. The experimental spectra yield the absolute elastic and inelastic scattering intensities from the measured density of free electrons. Laser-compressed lithium-hydride samples are well characterized by inelastic Compton and plasmon scattering of a K-α x-ray probe providing independent measurements of temperature and density. The data show excellent agreement with the total intensity and structure when using the two-species form factor and accounting for the screening of ion-ion interactions. © 2009 The American Physical Society.
More details from the publisher
More details

Design of a sub 100-femtosecond X-ray streak camera

Optics InfoBase Conference Papers (2009)

Authors:

B Li, PP Rajeev, G Gregori, M Benetou, B Dobson, A Cavalleri, L Pickworth, P Lau, P Jaanimagi, F Read, J Lynn, D Neely

Abstract:

The temporal resolution of existing streak cameras are limited by electron transit time dispersion. Here we present a state-of-art design compensating this to achieve a breakthrough of 100fs time resolution. © 2009 Optical Society of America.
More details from the publisher

Making relativistic positrons using ultraintense short pulse lasers

Physics of Plasmas 16:12 (2009)

Authors:

H Chen, SC Wilks, JD Bonlie, SN Chen, KV Cone, LN Elberson, G Gregori, DD Meyerhofer, J Myatt, DF Price, MB Schneider, R Shepherd, DC Stafford, R Tommasini, R Van Maren, P Beiersdorfer

Abstract:

This paper describes a new positron source using ultraintense short pulse lasers. Although it has been theoretically studied since the 1970s, the use of lasers as a valuable new positron source was not demonstrated experimentally until recent years, when the petawatt-class short pulse lasers were developed. In 2008 and 2009, in a series of experiments performed at the Lawrence Livermore National Laboratory, a large number of positrons were observed after shooting a millimeter thick solid gold target. Up to 2× 1010 positrons/s ejected at the back of approximately millimeter thick gold targets were detected. The targets were illuminated with short (∼1 ps) ultraintense (∼1× 1020 W/ cm2) laser pulses. These positrons are produced predominantly by the Bethe-Heitler process and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. For a wide range of applications, this new laser-based positron source with its unique characteristics may complement the existing sources based on radioactive isotopes and accelerators. © 2009 American Institute of Physics.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 55
  • Page 56
  • Page 57
  • Page 58
  • Current page 59
  • Page 60
  • Page 61
  • Page 62
  • Page 63
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet