Evolution of elastic x-ray scattering in laser-shocked warm dense lithium
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 80:6 (2009)
Abstract:
We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4-ns-long laser pulses. Separate 1-ns-long laser pulses were used to generate a bright source of 2.96 keV Cl Ly- α photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120° using a highly oriented pyrolytic graphite crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation-hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state Z̄ and by extension to the choice of ionization model in the radiation- hydrodynamics simulations used to predict plasma properties within the shocked Li. © 2009 The American Physical Society.Measurements of ionic structure in shock compressed lithium hydride from ultrafast x-ray Thomson scattering.
Phys Rev Lett 103:24 (2009) 245004
Abstract:
We present the first ultrafast temporally, spectrally, and angularly resolved x-ray scattering measurements from shock-compressed matter. The experimental spectra yield the absolute elastic and inelastic scattering intensities from the measured density of free electrons. Laser-compressed lithium-hydride samples are well characterized by inelastic Compton and plasmon scattering of a K-alpha x-ray probe providing independent measurements of temperature and density. The data show excellent agreement with the total intensity and structure when using the two-species form factor and accounting for the screening of ion-ion interactions.Measurements of ionic structure in shock compressed lithium hydride from ultrafast X-ray Thomson scattering
Physical Review Letters 103:24 (2009)
Abstract:
We present the first ultrafast temporally, spectrally, and angularly resolved x-ray scattering measurements from shock-compressed matter. The experimental spectra yield the absolute elastic and inelastic scattering intensities from the measured density of free electrons. Laser-compressed lithium-hydride samples are well characterized by inelastic Compton and plasmon scattering of a K-α x-ray probe providing independent measurements of temperature and density. The data show excellent agreement with the total intensity and structure when using the two-species form factor and accounting for the screening of ion-ion interactions. © 2009 The American Physical Society.Design of a sub 100-femtosecond X-ray streak camera
Optics InfoBase Conference Papers (2009)
Abstract:
The temporal resolution of existing streak cameras are limited by electron transit time dispersion. Here we present a state-of-art design compensating this to achieve a breakthrough of 100fs time resolution. © 2009 Optical Society of America.Making relativistic positrons using ultraintense short pulse lasers
Physics of Plasmas 16:12 (2009)