Fast Non-Adiabatic Dynamics of Many-Body Quantum Systems
Science Advances Springer Verlag
Abstract:
Modeling many-body quantum systems with strong interactions is one of the core challenges of modern physics. A range of methods has been developed to approach this task, each with its own idiosyncrasies, approximations, and realm of applicability. Perhaps the most successful and ubiquitous of these approaches is density functional theory (DFT). Its Kohn-Sham formulation has been the basis for many fundamental physical insights, and it has been successfully applied to fields as diverse as quantum chemistry, condensed matter and dense plasmas. Despite the progress made by DFT and related schemes, however, there remain many problems that are intractable for existing methods. In particular, many approaches face a huge computational barrier when modeling large numbers of coupled electrons and ions at finite temperature. Here, we address this shortfall with a new approach to modeling many-body quantum systems. Based on the Bohmian trajectories formalism, our new method treats the full particle dynamics with a considerable increase in computational speed. As a result, we are able to perform large-scale simulations of coupled electron-ion systems without employing the adiabatic Born-Oppenheimer approximation.Ionisation calculations using classical molecular dynamics
Physical Review E: Statistical, Nonlinear, and Soft Matter Physics American Physical Society
Abstract:
By performing an ensemble of molecular dynamics simulations, the model-dependent ionisation state is computed for strongly interacting systems self-consistently. This is accomplished through a free energy minimisation framework based on the technique of thermodynamic integration. To illustrate the method, two simple models applicable to partially ionised hydrogen plasma are presented in which pair potentials are employed between ions and neutral particles. Within the models, electrons are either bound in the hydrogen ground state or distributed in a uniform charge-neutralising background. Particular attention is given to the transition between atomic gas and ionised plasma, where the effect of neutral interactions is explored beyond commonly used models in the chemical picture. Furthermore, pressure ionisation is observed when short range repulsion effects are included between neutrals. The developed technique is general, and we discuss the applicability to a variety of molecular dynamics models for partially ionised warm dense matter.Learning transport processes with machine intelligence
Abstract:
We present a machine learning based approach to address the study of transport processes, ubiquitous in continuous mechanics, with particular attention to those phenomena ruled by complex micro-physics, impractical to theoretical investigation, yet exhibiting emergent behavior describable by a closed mathematical expression. Our machine learning model, built using simple components and following a few well established practices, is capable of learning latent representations of the transport process substantially closer to the ground truth than expected from the nominal error characterising the data, leading to sound generalisation properties. This is demonstrated through an idealized study of the long standing problem of heat flux suppression under conditions relevant for fusion and cosmic plasmas. A simple analysis shows that the result applies beyond those case specific assumptions and that, in particular, the accuracy of the learned representation is controllable through knowledge of the data quality (error properties) and a suitable choice of the dataset size. While the learned representation can be used as a plug-in for numerical modeling purposes, it can also be leveraged with the above error analysis to obtain reliable mathematical expressions describing the transport mechanism and of great theoretical value.Micron-scale phenomena observed in a turbulent laser-produced plasma
Nature Communications Nature Research (part of Springer Nature)
Modified Friedmann equations via conformal Bohm -- De Broglie gravity
The Astrophysical Journal: an international review of astronomy and astronomical physics American Astronomical Society