Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Space and Planets (artistic image)
Credit: hdwallpaperim.com/

Gianluca Gregori

Professor of Physics

Research theme

  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Laboratory astroparticle physics
  • Oxford Centre for High Energy Density Science (OxCHEDS)
Gianluca.Gregori@physics.ox.ac.uk
Telephone: 01865 (2)82639
Clarendon Laboratory, room 029.8
  • About
  • Publications

X-ray scattering from solid density plasmas

Physics of Plasmas 10:6 (2003) 2433-2441

Authors:

SH Glenzer, G Gregori, FJ Rogers, DH Froula, SW Pollaine, RS Wallace, OL Landen

Abstract:

A study on the x-ray scattering from solid density plasmas was presented. By applying spectrally resolved multi-keV scattering, the measurements of the microscopic properties of dense matter were demonstrated. The scattering spectra from solid density beryllium demonstrated the inelastic Compton-down shifted feature that is spectrally broadened when heating the solid density plasmas isochorically and homogeneously to temperatures of several times the Fermi energy.
More details from the publisher
More details

Demonstration of spectrally resolved x-ray scattering in dense plasmas.

Phys Rev Lett 90:17 (2003) 175002

Authors:

SH Glenzer, G Gregori, RW Lee, FJ Rogers, SW Pollaine, OL Landen

Abstract:

We present the first spectrally resolved x-ray scattering measurements from solid-density plasmas. The scattering spectra show the broadened Compton down-shifted feature allowing us to determine the electron temperature and density with high accuracy. In the low temperature limit, our data indicate that the ionization balance reflects the electrons in the conduction band consistent with calculations that include quantum mechanical corrections to the interaction potential.
More details from the publisher
More details

Stimulated Brillouin scattering in the saturated regime

PHYS PLASMAS 10:5 (2003) 1846-1853

Authors:

DH Froula, L Divol, DG Braun, BI Cohen, G Gregori, A Mackinnon, EA Williams, SH Glenzer, HA Baldis, DS Montgomery, RP Johnson

Abstract:

An experimental study of the stimulated Brillouin scattering (SBS) instability has investigated the effects of velocity gradients and kinetic effects on the saturation of ion-acoustic waves in a plasma. For intensities less than I<1.5x10(15) W cm(-2), SBS is in a linear regime and is moderated primarily by velocity gradients, while for intensities above this threshold, nonlinear trapping is relevant. Direct evidence of detuning of SBS by a velocity gradient was achieved by directly measuring the frequency of the SBS-driven acoustic wave relative to the local resonant acoustic frequency. The frequency and amplitude of the ion-acoustic wave directly responsible for SBS has been measured as a function of space using a 3omega 200 ps Thomson-scattering probe beam. Furthermore, direct evidence of kinetic effects associated with the SBS process in the nonlinear regime has been investigated through a novel use of Thomson scattering. Specifically, a measured twofold increase in the ion temperature has been linked with ion-acoustic waves that have been driven to large amplitudes by the SBS instability. Ion-acoustic waves were excited to large amplitude with a 2omega 1.2-ns-long interaction beam with intensities up to 7x10(15) W cm(-2). The measured twofold increase in the ion temperature and its correlation with SBS reflectivity measurements provides quantitative evidence of hot ions created by ion trapping in laser plasmas. These detailed and accurate measurements in well-characterized plasma conditions allow a direct test of linear and nonlinear models of the saturation of SBS. (C) 2003 American Institute of Physics.
More details from the publisher

Direct observation of stimulated-Brillouin-scattering detuning by a velocity gradient.

Phys Rev Lett 90:15 (2003) 155003

Authors:

DH Froula, L Divol, A MacKinnon, G Gregori, SH Glenzer

Abstract:

We report the first direct evidence of detuning of stimulated Brillouin scattering (SBS) by a velocity gradient, which was achieved by directly measuring the frequency shift of the SBS-driven acoustic wave relative to the local resonant acoustic frequency. We show that in the expanding part of the plasma, ion-acoustic waves are driven off resonance which leads to the saturation of the SBS instability. These measurements are well reproduced by fluid simulations that include the measured flow.
More details from the publisher
More details

Theoretical model of x-ray scattering as a dense matter probe

Physical Review E 62 (2003) 026412 10pp

Authors:

G Gregori, S. H. Glenzer, W. Rozmus, O. L. Landen
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 79
  • Page 80
  • Page 81
  • Page 82
  • Current page 83
  • Page 84
  • Page 85
  • Page 86
  • Page 87
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet