Modified Friedmann equations via conformal Bohm -- De Broglie gravity
The Astrophysical Journal: an international review of astronomy and astronomical physics American Astronomical Society
Abstract:
We use an alternative interpretation of quantum mechanics, based on the Bohmian trajectory approach, and show that the quantum effects can be included in the classical equation of motion via a conformal transformation on the background metric. We apply this method to the Robertson-Walker metric to derive a modified version of Friedmann's equations for a Universe consisting of scalar, spin-zero, massive particles. These modified equations include additional terms that result from the non-local nature of matter and appear as an acceleration in the expansion of the Universe. We see that the same effect may also be present in the case of an inhomogeneous expansion.Quantum Sensors for the Hidden Sector (QSHS) - A Summary of Our First Year!
Retrieving fields from proton radiography without source profiles
Abstract:
Proton radiography is a technique in high energy density science to diagnose magnetic and/or electric fields in a plasma by firing a proton beam and detecting its modulated intensity profile on a screen. Current approaches to retrieve the integrated field from the modulated intensity profile require the unmodulated beam intensity profile before the interaction, which is rarely available experimentally due to shot-to-shot variability. In this paper, we present a statistical method to retrieve the integrated field without needing to know the exact source profile. We apply our method to experimental data, showing the robustness of our approach. Our proposed technique allows not only for the retrieval of the path-integrated fields, but also of the statistical properties of the fields.Steady state rotational dynamics of a weakly ionised hydrogen plasma under cross-field configuration
Physics of Plasmas AIP Publishing