Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Magnetic skyrmions

Professor Thorsten Hesjedal FInstP

Professor of Condensed Matter Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Thin film quantum materials
  • Oxford Quantum Institute
  • Magnetism for Intelligent Devices (MIND)
Thorsten.Hesjedal@physics.ox.ac.uk
Telephone: 01865 (2)72235
  • About
  • Publications

Covalent mixing in the two-dimensional ferromagnet CrSiTe₃ evidenced by magnetic x-ray circular dichroism

physica status solidi (RRL) - Rapid Research Letters Wiley 16:4 (2021) 2100566

Authors:

Barat Achinuq, Ryuji Fujita, Wei Xia, Yanfeng Guo, Peter Bencok, Gerrit van der Laan, Thorsten Hesjedal

Abstract:

The low-temperature electronic structure of the van der Waals ferromagnet CrSiTe3 has been investigated. This ferromagnetic semiconductor has a magnetic bulk transition temperature of 33 K, which can reach up to 80 K in single- and few-layer flakes. X-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) measurements, carried out at the Cr L2,3 and Te Mb edges on in vacuo cleaved single crystals, give strong evidence for hybridization-mediated super-exchange between the Cr atoms. The observed chemical shift in the XAS, as well as the comparison of the XMCD with the calculated Cr L2,3 multiplet spectra, confirm a strongly covalent bond between the Cr 3d(eg) and Te 5p states. Application of the XMCD sum rules gives a non-vanishing orbital moment, supporting a partial occupation of the eg states, apart from the t2g. Also, the presence of a non-zero XMCD signal at the Te Mb edge confirms a Te 5p spin polarization due to mixing with the Cr eg bonding states. The results strongly suggest that superexchange, instead of the previously suggested single ion anisotropy, is responsible for the low-temperature ferromagnetic ordering of 2D materials such as CrSiTe3 and CrGeTe3. This demonstrates the interplay between electron correlation and ferromagnetism in insulating two-dimensional materials.

More details from the publisher
Details from ORA
More details

Superposition of emergent monopole and antimonopole in CoTb thin films

Physical Review Letters American Physical Society 127 (2021) 217201

Authors:

Yao Guang, Kejing Ran, Junwei Zhang, Yizhou Liu, Senfu Zhang, Xuepeng Qiu, Yong Peng, Xixiang Zhang, Markus Weigand, Joachim Graefe, Gisela Schuetz, Gerrit van der Laan, Thorsten Hesjedal, Shilei Zhang, Guoqiang Yu, Xiufeng Han

Abstract:

A three-dimensional singular point that consists of two oppositely aligned emergent monopoles is identified in continuous CoTb thin films, as confirmed by complementary techniques of resonant elastic x-ray scattering, Lorentz transmission electron microscopy, and scanning transmission x-ray microscopy. This new type of topological defect can be regarded as a superposition of an emergent magnetic monopole and an antimonopole, around which the source and drain of the magnetic flux overlap in space. We experimentally prove that the observed spin twist seen in Lorentz transmission electron microscopy reveals the cross-section of the superimposed three-dimensional structure, providing a straightforward strategy for the observation of magnetic singularities. Such a quasi particle provides an excellent platform for studying the rich physics of emergent electromagnetism.
More details from the publisher
Details from ORA
More details
More details

Transition metal synthetic ferrimagnets: tuneable media for all-optical switching driven by nanoscale spin current

Nano Letters American Chemical Society 21:21 (2021) 9210-9216

Authors:

M Dabrowski, Jn Scott, Wr Hendren, Cm Forbes, A Frisk, Dm Burn, Dg Newman, Crj Sait, Ps Keatley, At N'Diaye, Thorsten Hesjedal, G van der Laan, Rm Bowman, Rj Hicken

Abstract:

All-optical switching of magnetization has great potential for use in future ultrafast and energy efficient nanoscale magnetic storage devices. So far, research has been almost exclusively focused on rare-earth based materials, which limits device tunability and scalability. Here, we show that a perpendicularly magnetized synthetic ferrimagnet composed of two distinct transition metal ferromagnetic layers, Ni3Pt and Co, can exhibit helicity independent magnetization switching. Switching occurs between two equivalent remanent states with antiparallel alignment of the Ni3Pt and Co magnetic moments and is observable over a broad temperature range. Time-resolved measurements indicate that the switching is driven by a spin-polarized current passing through the subnanometer Ir interlayer. The magnetic properties of this model system may be tuned continuously via subnanoscale changes in the constituent layer thicknesses as well as growth conditions, allowing the underlying mechanisms to be elucidated and paving the way to a new class of data storage devices.
More details from the publisher
Details from ORA
More details
More details

Tracking Electron and Hole Dynamics in 3D Dirac Semimetals

International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2021-August (2021)

Authors:

JL Boland, DA Damry, CQ Xia, M Filip, P Schönherr, D Prabhakaran, T Hesjedal, LM Herz, MB Johnston

Abstract:

Using ultrafast optical-pump terahertz-probe spectroscopy (OPTP) and ultrafast terahertz emission spectroscopy, we showcase the electron and hole dynamics in Cd3As2 nanowires (NWs), a well-known 3D Dirac semimetal a subgroup of the newly discovered . A temperature-dependent photoconductivity measurement was carried out yielding an incredibly high electron mobility ~ 16,000 cm2/Vs at 5K. Strong THz emission due to helicity-dependent surface photocurrents was also observed for both nanowires and single crystal (SC) which is highly desirable for devices such as THz sources.
More details from the publisher
Details from ORA
More details

Magnetic topological insulator heterostructures: a review

Advanced Materials Wiley 35 (2021) 2102427

Authors:

Jieyi Liu, Thorsten Hesjedal

Abstract:

Topological insulators (TIs) provide intriguing prospects for the future of spintronics due to their large spin–orbit coupling and dissipationless, counter-propagating conduction channels in the surface state. The combination of topological properties and magnetic order can lead to new quantum states including the quantum anomalous Hall effect that was first experimentally realized in Cr-doped (Bi,Sb)2Te3 films. Since magnetic doping can introduce detrimental effects, requiring very low operational temperatures, alternative approaches are explored. Proximity coupling to magnetically ordered systems is an obvious option, with the prospect to raise the temperature for observing the various quantum effects. Here, an overview of proximity coupling and interfacial effects in TI heterostructures is presented, which provides a versatile materials platform for tuning the magnetic and topological properties of these exciting materials. An introduction is first given to the heterostructure growth by molecular beam epitaxy and suitable structural, electronic, and magnetic characterization techniques. Going beyond transition-metal-doped and undoped TI heterostructures, examples of heterostructures are discussed, including rare-earth-doped TIs, magnetic insulators, and antiferromagnets, which lead to exotic phenomena such as skyrmions and exchange bias. Finally, an outlook on novel heterostructures such as intrinsic magnetic TIs and systems including 2D materials is given.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • Current page 15
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet