Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Magnetic skyrmions

Professor Thorsten Hesjedal FInstP

Professor of Condensed Matter Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Thin film quantum materials
  • Oxford Quantum Institute
  • Magnetism for Intelligent Devices (MIND)
Thorsten.Hesjedal@physics.ox.ac.uk
Telephone: 01865 (2)72235
  • About
  • Publications

Skyrmions getting an X-ray

MagNews UK Magnetics Society 2019:3 (2020) 22-22

Authors:

Shilei Zhang, Thorsten Hesjedal, Gerrit van der Laan
Details from ORA

Depth-resolved magnetization dynamics revealed by x-ray reflectometry ferromagnetic resonance

Physical Review Letters American Physical Society 125 (2020) 137201

Authors:

Dm Burn, Sl Zhang, Gq Yu, Y Guang, Hj Chen, Xp Qiu, G van der Laan, Thorsten Hesjedal

Abstract:

Magnetic multilayers offer diverse opportunities for the development of ultrafast functional devices through advanced interface and layer engineering. Nevertheless, a method for determining their dynamic properties as a function of depth throughout such stacks have remained elusive. By probing the ferromagnetic resonance (FMR) modes with element-selective soft x-ray resonant reflectivity, we gain access to the magnetization dynamics as a function of depth. Most notably, using reflectometry ferromagnetic resonance (RFMR), we find a phase lag between the coupled ferromagnetic layers in [CoFeB/MgO/Ta]4 multilayers, which is invisible to other techniques. RFMR enables the time- and layer-resolved probing of the complex magnetization dynamics of a wide range of functional magnetic heterostructures with absorption edges in the soft x-ray wavelength regime.
More details from the publisher
Details from ORA
More details
More details

Electron beam lithography of magnetic skyrmions

Advanced Materials Wiley 32:39 (2020) 2003003

Authors:

Yao Guang, Yong Peng, Zhengren Yan, Yizhou Liu, Junwei Zhang, Xue Zeng, Senfu Zhang, Shilei Zhang, David M Burn, Nicholas Jaouen, Jinwu Wei, Hongjun Xu, Jiafeng Feng, Chi Fang, Gerrit van der Laan, Thorsten Hesjedal, Baoshan Cui, Xixiang Zhang, Guoqiang Yu, Xiufeng Han

Abstract:

The emergence of magnetic skyrmions, topological spin textures, has aroused tremendous interest in studying the rich physics related to their topology. While skyrmions promise high-density and energy-efficient magnetic memory devices for information technology, the manifestation of their nontrivial topology through single skyrmions and ordered and disordered skyrmion lattices could also give rise to many fascinating physical phenomena, such as chiral magnon and skyrmion glass states. Therefore, generating skyrmions at designated locations on a large scale, while controlling the skyrmion patterns, is the key to advancing topological magnetism. Here, a new, yet general, approach to the “printing” of skyrmions with zero-field stability in arbitrary patterns on a massive scale in exchange-biased magnetic multilayers is presented. By exploiting the fact that the antiferromagnetic order can be reconfigured by local thermal excitations, a focused electron beam with a graphic pattern generator to “print” skyrmions is used, which is referred to as skyrmion lithography. This work provides a route to design arbitrary skyrmion patterns, thereby establishing the foundation for further exploration of topological magnetism.
More details from the publisher
Details from ORA
More details
More details

Kerr effect anomaly in magnetic topological insulator superlattices

Nanotechnology IOP Publishing 31:43 (2020) 434001

Authors:

Jieyi Liu, Angadjit Singh, Balati Kuerbanjiang, Chw Barnes, Thorsten Hesjedal

Abstract:

We report the magneto-optical Kerr effect (MOKE) study of magnetic topological insulator superlattice films with alternating transition-metal and rare-earth doping. We observe an unexpected hump in the MOKE hysteresis loops upon magnetization reversal at low temperatures, reminiscent of the topological Hall effect(THE) reported in transport measurements. The THE is commonly associated with the existence of magnetic skyrmions, i.e., chiral spin textures originating from topological defects in real space. Here, the observation of the effect is tied to ferromagnetic ordering in the rare-earth-doped layers of the superlattice. Our study may provide a new approach for the non-invasive optical investigation of skyrmions in magnetic films, complementary to electrical transport measurements, where the topological Hall signal is often the only hint of non-trivial magnetization patterns.
More details from the publisher
Details from ORA
More details
More details
More details

Proximity-induced odd-frequency superconductivity in a topological insulator

Physical Review Letters American Physical Society 125:2 (2020) 026802

Authors:

Ja Krieger, A Pertsova, Sr Giblin, M Döbeli, T Prokscha, Cw Schneider, A Suter, Thorsten Hesjedal, Av Balatsky, Z Salman

Abstract:

At an interface between a topological insulator (TI) and a conventional superconductor (SC), superconductivity has been predicted to change dramatically and exhibit novel correlations. In particular, the induced superconductivity by an s-wave SC in a TI can develop an order parameter with a p-wave component. Here we present experimental evidence for an unexpected proximity-induced novel superconducting state in a thin layer of the prototypical TI, Bi2Se3 proximity coupled to Nb. From depthresolved magnetic field measurements below the superconducting transition temperature of Nb, we observe a local enhancement of the magnetic field in Bi2Se3 that exceeds the externally applied field, thus supporting the existence of an intrinsic paramagnetic Meissner effect arising from an odd-frequency superconducting state. Our experimental results are complemented by theoretical calculations supporting the appearance of such a component at the interface which extends into the TI. This state is topologically distinct from the conventional Bardeen-Cooper-Schrieffer state it originates from. To the best of our knowledge, these findings present a first observation of bulk odd-frequency superconductivity in a TI. We thus reaffirm the potential of the TI-SC interface as a versatile platform to produce novel superconducting states.
More details from the publisher
Details from ORA

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • Current page 19
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet