Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Magnetic skyrmions

Professor Thorsten Hesjedal FInstP

Professor of Condensed Matter Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Thin film quantum materials
  • Oxford Quantum Institute
  • Magnetism for Intelligent Devices (MIND)
Thorsten.Hesjedal@physics.ox.ac.uk
Telephone: 01865 (2)72235
  • About
  • Publications

Spin-current mediated exchange coupling in MgO-based magnetic tunnel junctions

Physical Review B: Condensed Matter and Materials Physics American Physical Society 103:6 (2021) 064416

Authors:

Lukasz Gladczuk, L Gladczuk, P Dluzewski, K Lasek, P Aleshkevych, Db Burn, G van der Laan, Thorsten Hesjedal

Abstract:

Heterostructures composed of ferromagnetic layers that are mutually interacting through a nonmagnetic spacer are at the core of magnetic sensor and memory devices. In the present study, layer-resolved ferromagnetic resonance was used to investigate the coupling between the magnetic layers of a Co/MgO/Permalloy magnetic tunnel junction. Two magnetic resonance peaks were observed for both magnetic layers, as probed at the Co and Ni L3 x-ray absorption edges, showing a strong interlayer interaction through the insulating MgO barrier. A theoretical model based on the Landau-Lifshitz-Gilbert-Slonczewski equation was developed, including exchange coupling and spin pumping between the magnetic layers. Fits to the experimental data were carried out, both with and without a spin pumping term, and the goodness of the fit was compared using a likelihood ratio test. This rigorous statistical approach provides an unambiguous proof of the existence of interlayer coupling mediated by spin pumping.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Spin-current mediated exchange coupling in MgO-based magnetic tunnel junctions

(2021)

Authors:

L Gladczuk, L Gladczuk, P Dluzewski, K Lasek, P Aleshkevych, DM Burn, G van der Laan, T Hesjedal
More details from the publisher

Canted standing spin-wave modes of Permalloy thin films observed by Ferromagnetic Resonance

New Journal of Physics IOP Publishing (2021)

Authors:

Maciej Dabrowski, Robert J Hicken, Andreas Frisk, David George Newman, Alpha T N'Diaye, Christoph Klewe, Padraic Shafer, Gerrit van der Laan, Thorsten Hesjedal, Graham Bowden
More details from the publisher
Details from ORA
More details

Magnetization dynamics in ordered spin structures revealed by diffractive and reflectometry ferromagnetic resonance

AIP Advances American Institute of Physics 11:1 (2021) 15327

Authors:

Dm Burn, Shilei Zhang, G van der Laan, T Hesjedal

Abstract:

Synchrotron radiation based techniques provide unique insight into both the element and time resolved magnetization behavior in magnetic spin systems. Here, we highlight the power of two recent developments, utilizing x-ray scattering techniques to reveal the precessional magnetization dynamics of ordered spin structures in the GHz regime, both in diffraction and reflection configurations. Our recently developed diffraction and reflectometry ferromagnetic resonance (DFMR and RFMR) techniques provide novel ways to explore the dynamics of modern magnetic materials, thereby opening up new pathways for the development of spintronic devices. In this paper we provide an overview of these techniques, and discuss the new understanding they provide into the magnetization dynamics in the chiral magnetic structure in Y-type hexaferrite and the depth dependence to the magnetization dynamics in a [CoFeB/MgO/Ta]4 multilayer.
More details from the publisher
Details from ORA
More details

Depth profiling of 3D skyrmion lattices in a chiral magnet: A story with a twist

AIP Advances AIP Publishing 11:1 (2021) 015108

Authors:

G van der Laan, Shilei Zhang, Thorsten Hesjedal

Abstract:

From the perspective of surface science, only the topmost atomic layers usually exhibit physical properties that are different to those of the bulk material, whereas the deeper layers are assumed to be bulk-like and remain largely unexplored. Going beyond conventional diffraction and imaging techniques, we have determined the depth dependence of the full 3D spin structure of magnetic skyrmions below the surface of a bulk Cu2OSeO3 sample using the polarization dependence of resonant elastic x-ray scattering (REXS). While the bulk spin configuration showed the anticipated Bloch type structure, it was found that the skyrmion lattice changes to a Néel twisting (i.e., with a different helicity angle) at the surface within a distance of several hundred nm. The exact surface helicity angle and penetration length of this twist have been determined, revealing the detailed internal structure of the skyrmion tube. It was found that the experimental penetration length of the Néel twisting is 7× longer than the theoretical value given by the ratio of J/D. This indicates that apart from the considered spin interactions, i.e., the Heisenberg exchange interaction J and the Dzyaloshinskii-Moriya interaction D, as well as the Zeeman interaction, other effects must play an important role. The findings suggest that the surface reconstruction of the skyrmion lattice is a universal phenomenon, stemming from the breaking of translational symmetry at the interface.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • Current page 17
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet