Study of Gd-doped Bi2Te3 thin films: Molecular beam epitaxy growth and magnetic properties
Journal of Applied Physics 115 (2014) 2
Nonvolatile full adder based on a single multivalued Hall junction
SPIN World Scientific Publishing 3:2 (2013) 1350008
Abstract:
Multivalued logic devices are promising candidates for achieving high-density, low-power memory and logic functionalities. We present a ferromagnetic multilayer Hall junction device with four distinct resistance - and thus logic - states. The states can be encoded as a quaternary bit and decoded into two binary bits. We demonstrate a nonvolatile full adder that is based on a single Hall junction, the extraordinary Hall balance. The device can be easily integrated into complex logic circuits for logic-in-memory architectures.Extraordinary hall balance
Scientific Reports 3 (2013)
Abstract:
Magnetoresistance (MR) effects are at the heart of modern information technology. However, future progress of giant and tunnelling MR based storage and logic devices is limited by the usable MR ratios of currently about 200% at room-temperature. Colossal MR structures, on the other hand, achieve their high MR ratios of up to 106% only at low temperatures and high magnetic fields. We introduce the extraordinary Hall balance (EHB) and demonstrate room-temperature MR ratios in excess of 31,000%. The new device concept exploits the extraordinary Hall effect in two separated ferromagnetic layers with perpendicular anisotropy in which the Hall voltages can be configured to be carefully balanced or tipped out of balance. Reprogrammable logic and memory is realised using a single EHB element. PACS numbers: 85.75.Nn,85.70.Kh,72.15.Gd,75.60.Ej.Extraordinary hall balance
Scientific Reports Nature Publishing Group 3 (2013) 2087
Abstract:
Magnetoresistance (MR) effects are at the heart of modern information technology. However, future progress of giant and tunnelling MR based storage and logic devices is limited by the usable MR ratios of currently about 200% at room-temperature. Colossal MR structures, on the other hand, achieve their high MR ratios of up to 106% only at low temperatures and high magnetic fields. We introduce the extraordinary Hall balance (EHB) and demonstrate room-temperature MR ratios in excess of 31,000%. The new device concept exploits the extraordinary Hall effect in two separated ferromagnetic layers with perpendicular anisotropy in which the Hall voltages can be configured to be carefully balanced or tipped out of balance. Reprogrammable logic and memory is realised using a single EHB element.Magnetic properties of gadolinium substituted Bi2Te3 thin films
Applied Physics Letters 102 (2013) 242412