Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Magnetic skyrmions

Professor Thorsten Hesjedal FInstP

Professor of Condensed Matter Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Thin film quantum materials
  • Oxford Quantum Institute
  • Topological Magnetism Group
Thorsten.Hesjedal@physics.ox.ac.uk
  • About
  • Publications

High frequency surface acoustic waves under the microscope

Humboldt-Spektrum 3-4 (2004) 62

Authors:

R Koch, T Hesjedal, KH Ploog

Nanoacoustics – High-Frequency Acoustic Wave Fields under the Microscope

Chapter in Science, Technology and Education of Microscopy: an Overview, Formatex 1 (2004) 9

Distribution of the dynamic strain and stress components within a layered film of A SAW resonator on LiTaO3

Proceedings of the IEEE Ultrasonics Symposium 1 (2003) 312-315

Authors:

Kubat, W Ruile, T Hesjedal, J Stotz, U Rösler, L Reindl

Abstract:

Based on recent reports about the acoustical power distribution in SAW resonators we present an analytical method to determine the distribution of the dynamic strain and stress components in SAW resonators on LiTaO3. This enables us to calculate the absolute strain and stress values for each point in the layer of a resonator for any driving condition and frequency. The SAW resonator is described by a P-Matrix based model, which gives us the distribution of the potential power and the resulting energy density. For calculation of the relative strain and stress values we used the Partial Wave Method. Using the correlation between the total acoustic power and the energy density distribution normal to the substrate surface, we can calculate the strain and stress values for a given input power. For the direct experimental verification of our calculations we measured the SAW induced displacements as a function of input power.
More details
More details from the publisher

Distribution of the dynamic strain and stress components within a layered film of a SAW resonator on LiTaO3

Proceedings of the IEEE Ultrasonics Symposium 2 (2003) 1149-1152

Authors:

F Kubat, W Ruile, T Hesjedal, J Stotz, U Rösler, L Reindl

Abstract:

Based on recent reports about the acoustical power distribution in SAW resonators we present an analytical method to determine the distribution of the dynamic strain and stress components in SAW resonators on LiTaO3. This enables us to calculate the absolute strain and stress values for each point in the layer of a resonator for any driving condition and frequency. The SAW resonator is described by a P-Matrix based model, which gives us the distribution of the potential power and the resulting energy density. For calculation of the relative strain and stress values we used the Partial Wave Method. Using the correlation between the total acoustic power and the energy density distribution normal to the substrate surface, we can calculate the strain and stress values for a given input power. For the direct experimental verification of our calculations we measured the SAW induced displacements as a function of input power.
More details
More details from the publisher

In-situ study of acoustomigration by scanning Acoustic Force Microscopy

Proceedings of the IEEE Ultrasonics Symposium 2 (2003) 1483-1486

Authors:

T Hesjedal, F Kubat, J Mohanty, W Ruile, L Reindl

Abstract:

High-power operation of surface acoustic wave devices may lead to stress induced material transport, so-called acoustomigration. We used Scanning Acoustic Force Microscopy (SAFM) to study acoustomigration of metal structures in-situ, i.e. during the high-power loading of the device. SAFM allows for the simultaneous measurement of the acoustic wavefield and the topography with submicron lateral resolution. We present acoustic wavefield and topographic image sequences giving a clear insight into the nature of the film damage on a submicron scale. The 900 MHz test structures were fabricated on 36°YX-LiTaO3 incorporating 420 nm thick Al electrodes. By correlating the acoustic wavefield mapping and the local changes in the topography point-by-point, already the initial changes of the granular structure that lead to acoustomigration can be visualized.
More details
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 58
  • Page 59
  • Page 60
  • Page 61
  • Current page 62
  • Page 63
  • Page 64
  • Page 65
  • Page 66
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet