Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Magnetic skyrmions

Professor Thorsten Hesjedal FInstP

Professor of Condensed Matter Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Thin film quantum materials
  • Oxford Quantum Institute
Thorsten.Hesjedal@physics.ox.ac.uk
Telephone: 01865 (2)72235
  • About
  • Publications

A Simple and Novel Approach to Fabricating Microfluidic Components Actuated By Termoresponsive Hydrogels

(2001)

Authors:

ME Harmon, MX Tang, T Hesjedal, CW Frank

Chemically vapor deposited Si nanowires nucleated by self-assembled Ti islands on patterned and unpatterned Si substrates

Proceedings of MSS10 (2001)

Authors:

TI Kamins, RS Williams, JS Harris, T Hesjedal

Investigation of crossed SAW fields by scanning acoustic force microscopy.

IEEE Trans Ultrason Ferroelectr Freq Control 48:4 (2001) 1132-1138

Authors:

G Behme, T Hesjedal

Abstract:

We used multimode scanning acoustic force microscopy (SAFM) for studying noncollinearly propagating Rayleigh and Love wave fields. By analyzing torsion and bending movement of SAFM cantilever, normal and in-plane wave oscillation components are accessible. The SAFM principle is the down-conversion of surface oscillations into cantilever vibrations caused by the nonlinearity of the tip-sample interaction. Through mixing of complementary oscillation components, phase velocities of crossed Rayleigh waves on GaAs and crossed Rayleigh and Love waves on the layered system SiO2/ST-cut quartz were obtained simultaneously. Now, it is possible to investigate elastic properties of submicron areas through multimode SAFM measurements. Finally, we present mixing experiments of four SAWs on GaAs and discuss the various influences on the measured SAFM amplitude and phase contrast.
More details from the publisher
More details

Influence of surface acoustic waves on lateral forces in scanning force microscopies

Journal of Applied Physics 89:9 (2001) 4850-4856

Authors:

G Behme, T Hesjedal

Abstract:

We present a detailed study of the influence of ultrasonic surface acoustic waves (SAWs) on point-contact friction. Lateral force microscopy (LFM) and multimode scanning acoustic force microscopy (SAFM) were used to measure and to distinguish between the influence of in-plane and vertical surface oscillation components on the cantilever's torsion and bending. The experiments show that friction can locally be suppressed by Rayleigh-type SAWs. Through the mapping of crossed standing wave fields, the wave amplitude dependence of the friction is visualized within microscopic areas without changing other experimental conditions. Above a certain wave amplitude threshold, friction vanishes completely. We found that the friction reduction effect is caused by the vertical oscillation components of the SAW. Purely in-plane polarized Love waves do not give rise to a significant friction reduction effect. Thus, we conclude that the mechanical diode effect, i.e., the effective shift of the cantilever off of the oscillating surface, is responsible for the SAW-induced lubrication. This explanation is supported by vertical and lateral SAFM measurements: in areas with completely vanishing friction, low frequency vertical cantilever oscillations are still observable, whereas lateral (torsional) cantilever oscillations are no longer excited. Additionally, at very high Rayleigh wave amplitudes an effect of lateral force rectification was observed. It results in a scan direction-independent appearance of the LFM traces. © 2001 American Institute of Physics.
More details from the publisher
More details

AFM observation of surface acoustic waves emitted from single symmetric SAW transducers.

IEEE Trans Ultrason Ferroelectr Freq Control 48:3 (2001) 641-642

Authors:

T Hesjedal, G Behme

Abstract:

We report the first experimental observation of surface acoustic waves (SAWs) launched from a single symmetric SAW transducer, employing scanning acoustic force microscopy (SAFM). SAFM is a simple technique for the imaging of complex interdigital transducer (IDT) radiation patterns with nanometer lateral resolution. We demonstrate submicron lateral resolution and high sensitivity by investigating a single excitation element on a weakly coupling substrate (GaAs), visualizing the launched wave and second-order effects.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 61
  • Page 62
  • Page 63
  • Page 64
  • Current page 65
  • Page 66
  • Page 67
  • Page 68
  • Page 69
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet