Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Magnetic skyrmions

Professor Thorsten Hesjedal FInstP

Professor of Condensed Matter Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Thin film quantum materials
  • Oxford Quantum Institute
  • Magnetism for Intelligent Devices (MIND)
Thorsten.Hesjedal@physics.ox.ac.uk
Telephone: 01865 (2)72235
  • About
  • Publications

Influence of surface acoustic waves on lateral forces in scanning force microscopies

Journal of Applied Physics 89:9 (2001) 4850-4856

Authors:

G Behme, T Hesjedal

Abstract:

We present a detailed study of the influence of ultrasonic surface acoustic waves (SAWs) on point-contact friction. Lateral force microscopy (LFM) and multimode scanning acoustic force microscopy (SAFM) were used to measure and to distinguish between the influence of in-plane and vertical surface oscillation components on the cantilever's torsion and bending. The experiments show that friction can locally be suppressed by Rayleigh-type SAWs. Through the mapping of crossed standing wave fields, the wave amplitude dependence of the friction is visualized within microscopic areas without changing other experimental conditions. Above a certain wave amplitude threshold, friction vanishes completely. We found that the friction reduction effect is caused by the vertical oscillation components of the SAW. Purely in-plane polarized Love waves do not give rise to a significant friction reduction effect. Thus, we conclude that the mechanical diode effect, i.e., the effective shift of the cantilever off of the oscillating surface, is responsible for the SAW-induced lubrication. This explanation is supported by vertical and lateral SAFM measurements: in areas with completely vanishing friction, low frequency vertical cantilever oscillations are still observable, whereas lateral (torsional) cantilever oscillations are no longer excited. Additionally, at very high Rayleigh wave amplitudes an effect of lateral force rectification was observed. It results in a scan direction-independent appearance of the LFM traces. © 2001 American Institute of Physics.
More details from the publisher
More details

AFM observation of surface acoustic waves emitted from single symmetric SAW transducers.

IEEE Trans Ultrason Ferroelectr Freq Control 48:3 (2001) 641-642

Authors:

T Hesjedal, G Behme

Abstract:

We report the first experimental observation of surface acoustic waves (SAWs) launched from a single symmetric SAW transducer, employing scanning acoustic force microscopy (SAFM). SAFM is a simple technique for the imaging of complex interdigital transducer (IDT) radiation patterns with nanometer lateral resolution. We demonstrate submicron lateral resolution and high sensitivity by investigating a single excitation element on a weakly coupling substrate (GaAs), visualizing the launched wave and second-order effects.
More details from the publisher
More details

Study of elementary surface acoustic wave phenomena

Europhysics Letters 54:2 (2001) 154-160

Authors:

T Hesjedal, G Behme

Abstract:

Many attempts have been made in acoustic microscopy to both achieve nanometer lateral resolution and sub-A wave amplitude detection. Employing a scanning acoustic force microscopy technique, acoustic wave properties of arbitrarily polarized modes can be measured with sub-wavelength resolution and high sensitivity. Surface acoustic wave fields of elementary model systems like a single scatterer and a single wave source are analysed in detail. We are able to observe radiation patterns, revealing the influence of the anisotropy of the GaAs substrate and the angular distribution of the piezoelectric coupling coefficient.
More details from the publisher
More details

High-resolution imaging of surface acoustic wave scattering

Applied Physics Letters 78:13 (2001) 1948-1950

Authors:

T Hesjedal, G Behme

Abstract:

We examine the scattering of surface acoustic waves (SAWs) by single dots, periodic and locally damped two-dimensional dot lattices. Employing the scanning acoustic force microscope, SAW fields are imaged with nanometer resolution. We study the influence of a roughly wavelength-sized single dot on SAW diffraction. In order to distinguish between forward- and backscattered components, we insonify the dot with the pump and probe beam under 0° and 90°. We furthermore analyse the SAW diffraction by a regular dot array. The wave field appears to be localized around the dots. Adding surface distortions, the regular SAW localization pattern brakes down in the vicinity of the distortion. © 2001 American Institute of Physics.
More details from the publisher
More details

Ti-catalyzed Si nanowires by chemical vapor deposition: Microscopy and growth mechanisms

Journal of Applied Physics 89:2 (2001) 1008-1016

Authors:

TI Kamins, RS Williams, DP Basile, T Hesjedal, JS Harris

Abstract:

Si nanowires grow rapidly by chemical vapor deposition on Ti-containing islands on Si surfaces when an abundant supply of Si-containing gaseous precursor is available. The density of wires is approximately the same as the density of the nucleating islands on the Si surface, although at least two different types of islands appear to correlate with very different wire growth rates. For the deposition conditions used, a minority of long, defect-free wires form, along with more numerous wires containing defects. Energy-dispersive x-ray spectroscopy shows that the Ti-containing nanoparticles remain at the tip of the growing wires. The estimated diffusion coefficient of Si in TiSi2 is consistent with the catalyzing nanoparticle remaining in the solid phase during nanowire growth. © 2001 American Institute of Physics.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 63
  • Page 64
  • Page 65
  • Page 66
  • Current page 67
  • Page 68
  • Page 69
  • Page 70
  • Page 71
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet