Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Magnetic skyrmions

Professor Thorsten Hesjedal FInstP

Professor of Condensed Matter Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Thin film quantum materials
  • Oxford Quantum Institute
  • Topological Magnetism Group
Thorsten.Hesjedal@physics.ox.ac.uk
  • About
  • Publications

Intrinsic Stress and Misfit Relaxation Ge/Si(001)

Proceedings of the 1998 SSDM (1998)

Authors:

G Wedler, J Walz, T Hesjedal, E Chilla, R Koch
More details from the publisher

Intrinsic stress upon Stranski-Krastanov growth of Ge on Si(001)

Surface Science 402-404 (1998) 290-294

Authors:

G Wedler, J Walz, T Hesjedal, E Chilla, R Koch

Abstract:

It is well established that the growth of Ge on Si(001) proceeds by Stranski-Krastanov mode, i.e. 3D islands ("hut" and macroscopic clusters) nucleate on top of a 3-4 ML thick pseudomorphic layer. Here, we present in-situ intrinsic stress measurements of Ge/Si(001) up to the film thicknesses at which the 3D islands percolate. From the film stress - and supported by AFM investigations - three stages of film growth characterised by different reliefs of the misfit strain can be discriminated: (1) the pseudomorphic layer-by-layer stage, (2) nucleation and growth and (3) coalescence of 3D islands. © 1998 Elsevier Science B.V. All rights reserved.
More details from the publisher
More details

Stress and relief of misfit strain of Ge/Si(001)

Physical Review Letters 80:11 (1998) 2382-2385

Authors:

G Wedler, J Walz, T Hesjedal, E Chilla, R Koch

Abstract:

The intrinsic stress of the Stranski-Krastanov system Ge/Si(001) was investigated in the range 700 1050 K. Characteristic stress features indicate that the relief of the misfit strain proceeds mainly in two steps: (i) by the formation of 3D islands on top of the Ge wetting layer and (ii) via misfit dislocations in larger 3D islands and upon their percolation. The temperature dependence of strain relief by 3D islands as well as their nucleation and growth behavior support a kinetic pathway for 3D islanding. © 1998 The American Physical Society.
More details from the publisher
More details

Surfing the SAW: Visualizing the oscillation of Au(111) surface atoms

Proceedings of the IEEE Ultrasonics Symposium 1 (1997) 511-514

Authors:

T Hesjedal, E Chilla, HJ Froehlich

Abstract:

In this paper we report the observation of surface acoustic waves using a scanning tunneling microscope (STM). As the STM's control electronics has a bandwidth limit in the kHz range, SAWs at typical frequencies of MHz to GHz cause a loss of contrast which can be clearly seen on an atomic scale. In order to access the amplitude and phase of a SAW, we introduced a heterodyning type STM, the scanning acoustic tunneling microscope (SATM). Contrary to the STM technique, the SATM measures snapshots of the state of oscillation. On the nanometer scale, two contributions to the phase and amplitude contrast are discussed. First, the SAWs phase delay gives a mainly linear dependence on the distance of the source. Second, the atomic oscillation trajectories within the SAW lead to a signal contribution that is made up of the shape of the oscillation trajectory and the local topography. On an atomic scale where the influence of the phase delay on the contrast can be neglected the oscillation trajectories of single surface atoms are studied. Finally, the atomically resolved phase and amplitude images are compared to simulated data.
More details
More details from the publisher

Towards the determination of elastic constants on a submicron scale using scanning acoustic force microscopy

Proceedings of the IEEE Ultrasonics Symposium 1 (1997) 549-552

Authors:

T Hesjedal, E Chilla, HJ Froehlich

Abstract:

This paper reports first steps towards the determination of elastic constants with submicron lateral resolution. The experimental phase velocity dispersion data were obtained on a micron scale using scanning acoustic force microscopy. The minimum of the corresponding error field is only weakly localized, thus giving a large error for the elastic constants. The localization can not be increased by using more of data points. In order to decrease the elastic constant's error, a Love mode is additionally regarded. However, the error field crossing is in this case not leading to a significant increase of the accuracy. We propose the inclusion of further surface guided modes.
More details
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 68
  • Page 69
  • Page 70
  • Page 71
  • Current page 72
  • Page 73
  • Page 74
  • Page 75
  • Page 76
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet