Corrigendum to “Unlocking the potential of antisolvent-free perovskite solar cells: Modulating crystallization and intermediates through a binary volatile additive strategy” [Nano Energy 124 (2024) 109487]
Nano Energy Elsevier 131 (2024) 110198
Correction to "Multicomponent Approach for Stable Methylammonium-Free Tin-Lead Perovskite Solar Cells".
ACS energy letters American Chemical Society (ACS) 9:10 (2024) 5206
Abstract:
[This corrects the article DOI: 10.1021/acsenergylett.3c02426.].Tetrapodal hole-collecting monolayer materials based on saddle-like cyclooctatetraene core for inverted perovskite solar cells
Angewandte Chemie International Edition Wiley (2024) e202412939
Abstract:
Hole-collecting monolayers have greatly advanced the development of positive-intrinsic-negative perovskite solar cells (p-i-n PSCs). To date, however, most of the anchoring groups in the reported monolayer materials are designed to bind to the transparent conductive oxide (TCO) surface, resulting in less availability for other functions such as tuning the wettability of the monolayer surface. In this work, we developed two anchorable molecules, 4PATTI-C3 and 4PATTI-C4, by employing a saddle-like indole-fused cyclooctatetraene as a π-core with four phosphonic acid anchoring groups linked through propyl or butyl chains. Both molecules form monolayers on TCO substrates. Thanks to the saddle shape of a cyclooctatetraene skeleton, two of the four phosphonic acid anchoring groups were found to point upward, resulting in hydrophilic surfaces. Compared to the devices using 4PATTI-C4 as the hole-collecting monolayer, 4PATTI-C3-based devices exhibit a faster hole-collection process, leading to higher power conversion efficiencies of up to 21.7 % and 21.4 % for a mini-cell (0.1 cm<sup>2</sup>) and a mini-module (1.62 cm<sup>2</sup>), respectively, together with good operational stability. This work represents how structural modification of multipodal molecules could substantially modulate the functions of the hole-collecting monolayers after being adsorbed onto TCO substrates.Tetrapodal hole‐collecting monolayer materials based on saddle‐like cyclooctatetraene core for inverted perovskite solar cells
Angewandte Chemie Wiley (2024) e202412939
Abstract:
Hole-collecting monolayers have greatly advanced the development of positive-intrinsic-negative perovskite solar cells (p-i-n PSCs). To date, however, most of the anchoring groups in the reported monolayer materials are designed to bind to the transparent conductive oxide (TCO) surface, resulting in less availability for other functions such as tuning the wettability of the monolayer surface. In this work, we developed two anchorable molecules, 4PATTI-C3 and 4PATTI-C4, by employing a saddle-like indole-fused cyclooctatetraene as a π-core with four phosphonic acid anchoring groups linked through propyl or butyl chains. Both molecules form monolayers on TCO substrates. Thanks to the saddle shape of a cyclooctatetraene skeleton, two of the four phosphonic acid anchoring groups were found to point upward, resulting in hydrophilic surfaces. Compared to the devices using 4PATTI-C4 as the hole-collecting monolayer, 4PATTI-C3-based devices exhibit a faster hole-collection process, leading to higher power conversion efficiencies of up to 21.7 % and 21.4 % for a mini-cell (0.1 cm2) and a mini-module (1.62 cm2), respectively, together with good operational stability. This work represents how structural modification of multipodal molecules could substantially modulate the functions of the hole-collecting monolayers after being adsorbed onto TCO substrates.Buried interface molecular hybrid for inverted perovskite solar cells
Nature Springer Nature (2024)