Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Shuaifeng Hu

Postdoctoral Research Assistant

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
shuaifeng.hu@physics.ox.ac.uk
Robert Hooke Building, room G24
Google Scholar
  • About
  • Publications

Roadmap on metal-halide perovskite semiconductors and devices

Materials Today Electronics Elsevier 11 (2025) 100138

Authors:

Ao Liu, Jun Xi, Hanlin Cen, Jinfei Dai, Yi Yang, Cheng Liu, Shuai Guo, Xiaofang Li, Xiaotian Guo, Feng Yang, Meng Li, Haoxuan Liu, Fei Zhang, Huagui Lai, Fan Fu, Shuaifeng Hu, Junke Wang, Seongrok Seo, Henry J Snaith, Jinghui Li, Jiajun Luo, Hongjin Li, Yun Gao, Xingliang Dai, Jia Zhang, Feng Gao, Zhengxun Lai, You Meng, Johnny C Ho, Wen Li, Yuntao Wu, Liping Du, Sai Bai, Huihui Zhu, Xianhang Lin, Can Deng, Liyi Yang, Liu Tang, Ahmad Imtiaz, Hanxiang Zhi, Xi Lu, Heng Li, Xiangyu Sun, Yicheng Zhao, Jian Xu, Xiaojian She, Jafar Iqbal Khan, Guanglong Ding, Su-Ting Han, Ye Zhou

Abstract:

Metal-halide perovskites are emerging as promising semiconductors for next-generation (opto)electronics. Due to their excellent optoelectronic and physical properties, as well as their processing capabilities, the past decades have seen significant progress and success in various device applications, such as solar cells, photodetectors, light-emitting diodes, and transistors. Despite their performance now rivaling or surpassing that of silicon counterparts, halide-perovskite semiconductors still face challenges for commercialization, particularly in terms of toxicity, stability, reliability, reproducibility, and lifetime. In this Roadmap, we present comprehensive discussions and perspectives from leading experts in the perovskite research community, covering various perovskite (opto)electronics, fundamental material properties and fabrication methods, photophysical characterizations, computing science, device physics, and the current challenges in each field. We hope this article provides a valuable resource for researchers and fosters the development of halide perovskites from basic to applied science.
More details from the publisher
Details from ORA
More details

In-situ molecular compensation in wide-bandgap perovskite for efficient all-perovskite tandem solar cells

Energy and Environmental Science Royal Society of Chemistry 18:11 (2025) 5503-5510

Authors:

Sheng Fu, Nannan Sun, Shuaifeng Hu, Hao Chen, Xingxing Jiang, Yunfei Li, Xiaotian Zhu, Xuemin Guo, Wenxiao Zhang, Xiaodong Li, Andrey S Vasenko, Junfeng Fang

Abstract:

Substantial VOC loss and halide segregation in wide-bandgap (WBG) perovskite sub-cells pose significant challenges for advancing all-perovskite tandem solar cells (APTSCs). Regarding this, one of the most impactful developments is the application of hole-selective self-assembled monolayers (SAMs), leading to the advancement in APTSC technology. However, SAMs with poor polar-solvent resistance would be inevitably delaminated from substrates during perovskite precursor coating, remaining great challenge in achieving a complete SAMs coverage with derivatization issues, e.g. defective perovskite and considerable interface energy loss. Here, we introduced an in-situ molecular compensation strategy to address the inherent flaw of SAMs within WBG perovskites via incorporating 5-ammonium valeric acid iodide (5-AVAI). The larger-dipole 5-AVAI spontaneously accumulates toward the buried interface to compensate the SAMs-deficient sites when depositing WBG perovskite, effectively minimizing interfacial energy loss. Simultaneously, amphoteric 5-AVAI with amino and carboxyl groups can compensate the defects at grain boundaries for solid passivation. Consequently, a champion efficiency of 20.23% with a record VOC of 1.376 V was realized on WBG devices, enabling an efficiency of 28.9% for the APTSCs. Encouragingly, the tandems showed good operational stability and retained 87.3% of their efficiency after 800 hours of tracking.

More details from the publisher
Details from ORA
More details

Performance and stability analysis of all-perovskite tandem photovoltaics in light-driven electrochemical water splitting

Nature Communications Springer Nature 16:1 (2025) 174

Authors:

Junke Wang, Bruno Branco, Willemijn HM Remmerswaal, Shuaifeng Hu, Nick RM Schipper, Valerio Zardetto, Laura Bellini, Nicolas Daub, Martijn M Wienk, Atsushi Wakamiya, Henry J Snaith, René AJ Janssen

Abstract:

All-perovskite tandem photovoltaics are a potentially cost-effective technology to power chemical fuel production, such as green hydrogen. However, their application is limited by deficits in open-circuit voltage and, more challengingly, poor operational stability of the photovoltaic cell. Here we report a laboratory-scale solar-assisted water-splitting system using an electrochemical flow cell and an all-perovskite tandem solar cell. We begin by treating the perovskite surface with a propane-1,3-diammonium iodide solution that reduces interface non-radiative recombination losses and achieves an open-circuit voltage above 90% of the detailed-balance limit for single-junction solar cells between the bandgap of 1.6–1.8 eV. Specifically, a high open-circuit voltage of 1.35 V and maximum power conversion efficiency of 19.9% are achieved at a 1.77 eV bandgap. This enables monolithic all-perovskite tandem solar cells with a 26.0% power conversion efficiency at 1 cm2 area and a pioneering photovoltaic-electrochemical system with a maximum solar-to-hydrogen efficiency of 17.8%. The system retains over 60% of its peak performance after operating for more than 180 h. We find that the performance loss is mainly due to the degradation of the photovoltaic component. We observe severe charge collection losses in the narrow-bandgap sub-cell that can be attributed to the interface degradation between the narrow-bandgap perovskite and the hole-transporting layer. Our study suggests that developing chemically stable absorbers and contact layers is critical for the applications of all-perovskite tandem photovoltaics.
More details from the publisher
Details from ORA
More details
More details

Performance and stability analysis of all-perovskite tandem photovoltaics in light-driven electrochemical water splitting

University of Oxford (2025)

Authors:

Junke Wang, Bruno Branco, Willemijn HM Remmerswaal, Shuaifeng Hu, Nick RM Schipper, Valerio Zardetto, Laura Bellini, Nicolas Daub, Martijn M Wienk, Atsushi Wakamiya, Henry J Snaith, René AJ Janssen

Abstract:

January 4, 2025
More details from the publisher
Details from ORA

Steering perovskite precursor solutions for multijunction photovoltaics

Nature Nature Research (2024)

Authors:

Shuaifeng Hu, Junke Wang, Pei Zhao, Jorge Pascual, Jianan Wang, Florine Rombach, Akash Dasgupta, Wentao Liu, Minh Anh Truong, He Zhu, Manuel Kober-Czerny, James N Drysdale, Joel A Smith, Zhongcheng Yuan, Guus JW Aalbers, Nick RM Schipper, Jin Yao, Kyohei Nakano, Silver-Hamill Turren-Cruz, André Dallmann, M Greyson Christoforo, James M Ball, David P McMeekin, Karl-Augustin Zaininger, Zonghao Liu, Nakita K Noel, Keisuke Tajima, Wei Chen, Masahiro Ehara, René AJ Janssen, Atsushi Wakamiya, Henry J Snaith

Abstract:

Multijunction photovoltaics (PVs) are gaining prominence owing to their superior capability of achieving power conversion efficiencies (PCEs) beyond the radiative limit of single-junction cells<sup>1-8</sup>, where improving narrow bandgap tin-lead perovskites is critical for thin-film devices<sup>9</sup>. With a focus on understanding the chemistry of tin-lead perovskite precursor solutions, we herein find that Sn(II) species dominate interactions with precursors and additives and uncover the exclusive role of carboxylic acid in regulating solution colloidal properties and film crystallisation, and ammonium in improving film optoelectronic properties. Materials that combine these two function groups, amino acid salts, considerably improve the semiconducting quality and homogeneity of perovskite films, surpassing the effect of the individual functional groups when introduced as part of separate molecules. Our enhanced tin-lead perovskite layer allows us to fabricate solar cells with PCEs of 23.9, 29.7 (certified 29.26%), and 28.7% for single-, double-, and triple-junction devices, respectively. Our 1-cm<sup>2</sup> triple-junction devices show PCEs of 28.4% (certified 27.28%). Encapsulated triple-junction cells maintain 80% of their initial efficiencies after 860 h maximum power point tracking in ambient. We further fabricate quadruple-junction devices and obtain PCEs of 27.9% with the highest open-circuit voltage of 4.94 V. This work establishes a new benchmark for multijunction PVs.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet